On the inverse theorem of rational approximations for Bergman space
Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 34-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the inverse theorems of the theory of rational approximations. We prove the analogues of these theorems in the Bergman space of analytical functions in the circle.
Keywords: rational functions, the best rational approximation, Bergman space, rational approximation.
@article{PFMT_2010_1_a7,
     author = {V. R. Misiuk},
     title = {On the inverse theorem of rational approximations for {Bergman} space},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {34--37},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_1_a7/}
}
TY  - JOUR
AU  - V. R. Misiuk
TI  - On the inverse theorem of rational approximations for Bergman space
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 34
EP  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_1_a7/
LA  - ru
ID  - PFMT_2010_1_a7
ER  - 
%0 Journal Article
%A V. R. Misiuk
%T On the inverse theorem of rational approximations for Bergman space
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 34-37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_1_a7/
%G ru
%F PFMT_2010_1_a7
V. R. Misiuk. On the inverse theorem of rational approximations for Bergman space. Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 34-37. http://geodesic.mathdoc.fr/item/PFMT_2010_1_a7/

[1] T. M. Flett, “Lipschitz spaces of functions on the circle and the disk”, J. Math. Anal. and Appl., 39:1 (1972), 121–158 | DOI | MR

[2] A. A. Pekarskii, “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii i obratnye teoremy ratsionalnoi approksimatsii”, Matem. sb., 124:4 (1984), 571–588 | MR | Zbl

[3] A. A. Pekarskii, “Ratsionalnye priblizheniya vypuklykh funktsii”, Matem. zametki, 38:5 (1985), 679–690 | MR

[4] Dzh. L. Uolsh, Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961, 508 pp. | MR

[5] G. G. Lorentz, M. V. Golitschek, Y. Makovoz, Constructive Approximation. Advanced problems, Springer-Verlag, Berlin, 1996, 651 pp. | MR

[6] R. A. DeVore, G. G. Lorentz, Constructive approximation, N. Y., Berlin, 1993 | MR

[7] V. R. Misyuk, “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii otnositelno ploskoi mery”, Trudy Instituta matematiki NAN Belarusi, 9 (2001), 105–108

[8] S. O. Sinanyan, “Approksimatsiya analiticheskimi funktsiyami i polinomami v srednem po ploschadi”, Matem. sbornik, 69 (1966), 546–578 | Zbl

[9] R.E. Edvards, Funktsionalnyi analiz, IIL, M., 1969, 1071 pp.

[10] I. K. Daugave, Vvedenie v teoriyu priblizheniya funktsii, Izd-vo Leningr. un-ta, L., 1977, 184 pp. | MR | Zbl

[11] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 511 pp. | MR | Zbl

[12] I. Berg, I. Lefstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980, 264 pp. | MR

[13] J. Peetre, G. Sparr, “Interpolation of normed Abelian groups”, Ann. Mat. Pura Appl., 92 (1972), 217–262 | DOI | MR | Zbl

[14] Kh. Tribel, Teoriya funktsionalnykh prostranstv, Mir, M., 1986, 447 pp. | MR | Zbl

[15] J. Peetre, New thoughts on Besov spaces, Math. Dept., Duke Univ., 1976, 264 pp. | MR