The symmetries of Riccati equation
Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 31-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theory of reflecting function is applied to investigate Riccati equation.
Keywords: differential equation, periodic solution, in period-transformation.
@article{PFMT_2010_1_a6,
     author = {V. I. Mironenko},
     title = {The symmetries of {Riccati} equation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {31--33},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_1_a6/}
}
TY  - JOUR
AU  - V. I. Mironenko
TI  - The symmetries of Riccati equation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 31
EP  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_1_a6/
LA  - ru
ID  - PFMT_2010_1_a6
ER  - 
%0 Journal Article
%A V. I. Mironenko
%T The symmetries of Riccati equation
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 31-33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_1_a6/
%G ru
%F PFMT_2010_1_a6
V. I. Mironenko. The symmetries of Riccati equation. Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 31-33. http://geodesic.mathdoc.fr/item/PFMT_2010_1_a6/

[1] V. I. Mironenko, Otrazhayuschaya funktsiya i periodicheskie resheniya differentsialnykh uravnenii, Universitetskoe, Minsk, 1986, 76 pp. | MR | Zbl

[2] V. I. Mironenko, Otrazhayuschaya funktsiya i issledovanie mnogomernykh differentsialnykh sistem, UO «GGU im. F. Skoriny», Gomel, 2004, 196 pp. | MR

[3] E. V. Musafirov, “O prostote lineinykh differentsialnykh sistem”, Differentsialnye uravneniya, 38:4 (2002), 570–572 | MR | Zbl

[4] E. V. Musafirov, “Differential systems, the mapping over period for which is represented by a product of three exponential matrixes”, Journal of Mathematical Analysis and Applications, 329 (2007), 647–654 | DOI | MR | Zbl

[5] E. V. Musafirov, “Reflecting function and periodic solutions of differential systems with small parameter”, Indian Journal of Mathematics, 50:1 (2008), 63–76 | MR | Zbl

[6] Z. Zhengxin, “On the Poincare mapping and periodic solutions of nonautonomous differential systems”, Commun. Pure Appl. Anal., 6:2 (2007), 541–547 | DOI | MR | Zbl

[7] Z. Shanlin, Z. Zhengxin, “On the equivalence of the Abel equation”, Ann. Differ. Equations, 22:3 (2006), 461–466 | MR | Zbl

[8] Z. Zhengxin, “Stability of differential systems”, Appl. Math., Ser. B, 21:3 (2006), 327–334 (Engl. Ed.) | DOI | MR | Zbl

[9] Z. Zhengxin, “On the reflective function of polynomial differential system”, J. Math. Anal. Appl., 278:1 (2003), 18–26 | DOI | MR | Zbl

[10] Z. Zhengxin, Yu. Yuexin, “The nonlinear reflective function of differential system”, Nonlinear Anal. Theory Methods Appl., 53:6 (2003), 733–741 | DOI | MR | Zbl

[11] Z. Zhengxin, Yu. Yuanhong, “Poincare mapping and periodic solution for the nonlinear differential system”, J. Syst. Sci. Math. Sci., 26:1 (2006), 59–68 | MR | Zbl

[12] V. I. Mironenko, V. V. Mironenko, “Vozmuscheniya sistem, ne izmenyayuschie vremennykh simmetrii i otobrazheniya Puankare”, Differentsialnye uravneniya, 44:10 (2008), 1347–1352 | MR | Zbl

[13] V. I. Mironenko, V. V. Mironenko, “How to construct equivalent differential systems”, Applied Mathematic Letters, 22 (2009), 1356–1359 | DOI | MR | Zbl

[14] M. A. Krasnoselskii, Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966, 332 pp. | MR