On $\mathcal{U}\Phi$-hypercentre of finite groups
Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 28-30

Voir la notice de l'article provenant de la source Math-Net.Ru

The product of all normal subgroups of $G$ whose all non-Frattini $G$-chief factors are cyclic is called the $\mathcal{U}\Phi$-hypercentre of $G$. The following theorem is proved.Theorem. Let $X \le E$ be soluble normal subgroups of $G$. Suppose that every maximal subgroup of every Sylow subgroup of $X$ conditionally covers or avoids each maximal pair $(M,G)$, where $MX = G$. If $X$ is either $E$ or $F(E)$, then. $E \le Z_{\mathcal{U}\Phi}(G)$.
Keywords: $\mathcal{U}\Phi$-hypercentre, supersoluble group, (conditionally) cover-avoidance property of subgroups, CAP-subgroup.
Mots-clés : maximal pair
@article{PFMT_2010_1_a5,
     author = {V. A. Kovaleva and A. N. Skiba},
     title = {On $\mathcal{U}\Phi$-hypercentre of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {28--30},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_1_a5/}
}
TY  - JOUR
AU  - V. A. Kovaleva
AU  - A. N. Skiba
TI  - On $\mathcal{U}\Phi$-hypercentre of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 28
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_1_a5/
LA  - ru
ID  - PFMT_2010_1_a5
ER  - 
%0 Journal Article
%A V. A. Kovaleva
%A A. N. Skiba
%T On $\mathcal{U}\Phi$-hypercentre of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 28-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_1_a5/
%G ru
%F PFMT_2010_1_a5
V. A. Kovaleva; A. N. Skiba. On $\mathcal{U}\Phi$-hypercentre of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 28-30. http://geodesic.mathdoc.fr/item/PFMT_2010_1_a5/