On $\mathcal{U}\Phi$-hypercentre of finite groups
Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 28-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The product of all normal subgroups of $G$ whose all non-Frattini $G$-chief factors are cyclic is called the $\mathcal{U}\Phi$-hypercentre of $G$. The following theorem is proved.Theorem. Let $X \le E$ be soluble normal subgroups of $G$. Suppose that every maximal subgroup of every Sylow subgroup of $X$ conditionally covers or avoids each maximal pair $(M,G)$, where $MX = G$. If $X$ is either $E$ or $F(E)$, then. $E \le Z_{\mathcal{U}\Phi}(G)$.
Keywords: $\mathcal{U}\Phi$-hypercentre, supersoluble group, (conditionally) cover-avoidance property of subgroups, CAP-subgroup.
Mots-clés : maximal pair
@article{PFMT_2010_1_a5,
     author = {V. A. Kovaleva and A. N. Skiba},
     title = {On $\mathcal{U}\Phi$-hypercentre of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {28--30},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_1_a5/}
}
TY  - JOUR
AU  - V. A. Kovaleva
AU  - A. N. Skiba
TI  - On $\mathcal{U}\Phi$-hypercentre of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 28
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_1_a5/
LA  - ru
ID  - PFMT_2010_1_a5
ER  - 
%0 Journal Article
%A V. A. Kovaleva
%A A. N. Skiba
%T On $\mathcal{U}\Phi$-hypercentre of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 28-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_1_a5/
%G ru
%F PFMT_2010_1_a5
V. A. Kovaleva; A. N. Skiba. On $\mathcal{U}\Phi$-hypercentre of finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 28-30. http://geodesic.mathdoc.fr/item/PFMT_2010_1_a5/

[1] V. A. Kovaleva, A. N. Skiba, “Konechnye gruppy s obobschennym usloviem pokrytiya i izolirovaniya dlya podgrupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2009, no. 2 (53), 145–149 | MR

[2] V. A. Kovaleva, A. N. Skiba, “Kharakterizatsii konechnykh razreshimykh grupp po svoistvam obobschennogo pokrytiya i izolirovaniya dlya podgrupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2009, no. 3 (54), 200–206 | Zbl

[3] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989 | MR

[4] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[5] L. A. Shemetkov, A. N. Skiba, “On the $X\Phi$-hypercentre of finite groups”, J. Algebra, 2009, no. 322, 2106–2117 | DOI | MR | Zbl

[6] A. N. Skiba, “On weakly $S$-permutable subgroups of finite groups”, J. Algebra, 2007, no. 315, 192–209 | DOI | MR | Zbl

[7] A. N. Skiba, “Finite groups with given systems of generalized permutable subgroups”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2006, no. 36 (3), 12–31

[8] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978 | MR | Zbl

[9] L. M. Ezquerro, “A contribution to the theory of finite supersolvable groups”, Rend. Sem. Mat. Univ. Padova, 1993, no. 89, 161–170 | MR | Zbl