On irreduсible soluble local formations which науе $p$-decomposable defect 3
Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

All groups considered are finite. Let $\mathfrak{H}$ be a class of groups, $\mathfrak{F}$ be a local formation. We denote by $\mathfrak{F}/_l\mathfrak{F} \cap \mathfrak{H}$ the lattice of local formations concluded between $\mathfrak{F}$ and $\mathfrak{F} \cap \mathfrak{H}$ has finite length $n$ , then $n$ is called the $\mathfrak{H}$-defect $\mathfrak{F}$. A local formation $\mathfrak{F}$ is called reducible if $\mathfrak{F} = $ lform$(\bigcup\limits_{i \in I} \mathfrak{F}_i )$, where $\{\mathfrak{F}_i \mid i \in I\}$ is the set of all nontrivial local subformation of $\mathfrak{F}$. In this paper we obtain the exact description of irreducible soluble local formations with $p$-decomposable defect 3.
Keywords: finite group, class of groups, lattice, lenglh of lattice, irreducible local formation
Mots-clés : local formation, local chain, $p$-decomposable group, soluble local formalion.
@article{PFMT_2010_1_a2,
     author = {V. V. Aniskov},
     title = {On irredu{\cyrs}ible soluble local formations which {\cyrn}{\cyra}{\cyru}{\cyre} $p$-decomposable defect 3},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {16--21},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_1_a2/}
}
TY  - JOUR
AU  - V. V. Aniskov
TI  - On irreduсible soluble local formations which науе $p$-decomposable defect 3
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 16
EP  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_1_a2/
LA  - ru
ID  - PFMT_2010_1_a2
ER  - 
%0 Journal Article
%A V. V. Aniskov
%T On irreduсible soluble local formations which науе $p$-decomposable defect 3
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 16-21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_1_a2/
%G ru
%F PFMT_2010_1_a2
V. V. Aniskov. On irreduсible soluble local formations which науе $p$-decomposable defect 3. Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 16-21. http://geodesic.mathdoc.fr/item/PFMT_2010_1_a2/

[1] L. A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 267 pp. | MR | Zbl

[2] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 253 pp. | MR

[3] V. V. Aniskov, “O privodimykh lokalnykh formatsiyakh s zadannym $\mathfrak{H}$-defektom”, Vestsi AN Belarusi. Ser. fiz.-mat. navuk, 1997, no. 4, 65–68 | MR

[4] A. N. Skiba, “O lokalnykh formatsiyakh s ogranichennym $p$-razlozhimym defektom”, Izv. vuzov. Ser. Matematika, 1991, no. 4, 63–69 | MR | Zbl

[5] V. G. Safonov, “O razreshimykh lokalnykh formatsiyakh nilpotentnogo defekta 3”, Vestsi AN Belarusi. Ser. fiz.-mat. navuk, 1996, no. 3, 8–12 | MR | Zbl

[6] V. V. Aniskov, “Klassifikatsiya razreshimykh neprivodimykh lokalnykh formatsii s $p$-nilpotentnym defektom 2”, Vesnik BDU. Ser. 1. Fizika. Matematika. Mekhanika, 1995, no. 2, 66–69 | MR

[7] V. V. Aniskov, O privodimykh lokalnykh formatsiyakh $p$-razlozhimogo defekta 3, Preprint No 21, Izd-vo GGU, Gomel, 2008, 14 pp. | MR

[8] V. V. Aniskov, O razlozhimykh lokalnykh formatsiyakh $p$-zamknutogo defekta 2 s razlichnymi ogranicheniyami, Preprint No 57, Izd-vo GGU, Gomel, 2003, 13 pp.