Scalar paraxial two-dimensional Gaussian-like light beams
Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 7-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unified formalism which allows to deduce expressions for paraxial two-dimensional Gaussian-like light Kummer-Gaussian beams and Helmholtz-Gaussian beams is offered. This formalism also allows to discover correlations between them. Simple conditions of their physical realizability are formulated. New types of Kummer-Gaussian beams are discovered. Such beams are presented by the Gaussian product on the function Kummer of the complex argument and nonnegative integer index $n$.
Keywords: paraxial beams, Hermite-Gaussian beams, Kummer-Gaussian beams, Helmholtz-Gaussian beams, Gaussian-like beams.
@article{PFMT_2010_1_a0,
     author = {S. S. Girgel},
     title = {Scalar paraxial two-dimensional {Gaussian-like} light beams},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--11},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2010_1_a0/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Scalar paraxial two-dimensional Gaussian-like light beams
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2010
SP  - 7
EP  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2010_1_a0/
LA  - ru
ID  - PFMT_2010_1_a0
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Scalar paraxial two-dimensional Gaussian-like light beams
%J Problemy fiziki, matematiki i tehniki
%D 2010
%P 7-11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2010_1_a0/
%G ru
%F PFMT_2010_1_a0
S. S. Girgel. Scalar paraxial two-dimensional Gaussian-like light beams. Problemy fiziki, matematiki i tehniki, no. 1 (2010), pp. 7-11. http://geodesic.mathdoc.fr/item/PFMT_2010_1_a0/

[1] Yu. A. Ananev, Opticheskie rezonatory i problema raskhodimosti lazernogo izlucheniya, Nauka, M., 1990, 264 pp.

[2] A. P. Kiselev, “Novye struktury paraksialnykh gaussovykh puchkov”, Opt. i spektr., 96:4 (2004), 533–535

[3] A. M. Goncharenko, Gaussovy puchki sveta, Nauka i tekhnika, Mn., 1977, 142 pp. | Zbl

[4] F. Gori, G. Guattari, C. Padovani, “Bessel–Gaussian beams”, Opt. Communs., 64 (1987), 491–495 | DOI

[5] R. Pratesi, L. Ronchi, “Generalized gaussian beams in free space”, JOSA, 17:9 (1977), 1274–1276 | DOI

[6] A.E. Siegman, “Hermite-gaussian function of complex argument as optical-beam eigenfunction”, JOSA, 63:9 (1973), 1093–1094 | DOI | MR

[7] M. A. Bandres, J. C. Gutierres-Vega, “Vector Helmholtz–Gauss and vector Laplace–Gauss beams”, Optics Letters, 30:16 (2005), 2155–2157 | DOI

[8] M. A. Bandres, J. C. Gutierres-Vega, “Cartesian beams”, Optics Letters, 32:23 (2007), 3459–3461 | DOI

[9] A. Torre, “A note on the general solution of paraxial wave equation: a Lie algebra view”, Journ. Opt. A, 10:8 (2008), 055006–055020 | DOI | MR

[10] N. N. Lebedev, Spetsialnye funktsii i ikh prilozheniya, GITTL, M., 1953, 379 pp.

[11] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp. | MR

[12] E. Yanke, F. Emde, F. Lesh, Spetsialnye funktsii, Nauka, M., 1977, 342 pp.

[13] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fiziko-matematicheskaya literatura, M., 2001, 576 pp.

[14] E. Karimi et al., “Hypergeometric-Gaussian modes”, Optics Letters, 32:21 (2007), 3053–3055 | DOI

[15] E. Karimi et al., “Improved focusing with Hypergeometric-Gaussian type-II optical modes”, Optics Express, 16:25 (2008), 21069–21075 | DOI

[16] V. V. Kotlyar i dr., “Gipergeometricheskie mody”, Kompyuternaya optika, 2006, no. 3, 16–22

[17] Baida Lü, Hong Ma, “Beam propagation factor of decentred Gaussian and cosine-Gaussian beams”, Journal of Modern Optics, 47:4 (2000), 719–723