On reducible $\tau$-closed $\omega$-saturated formations with a soluble defect 2
Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 64-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak F$ be some $\tau$-closed $\omega$-saturated formation, $\mathfrak S$ be the formation of all soluble groups. Then $\mathfrak F/^{\omega}_{\tau}\mathfrak F \cap \mathfrak S$ denotes the lattice of all $\tau$-closed $\omega$-saturated formations $\mathfrak H$ such that $\mathfrak F \cap \mathfrak S \subseteq \mathfrak H \subseteq \mathfrak F$. A length of the lattice $\mathfrak F/^{\omega}_{\tau}\mathfrak F \cap \mathfrak S$ is called a soluble $l^{\omega}_{\tau}$-defect of the $\tau$-closed $\omega$-saturated formation $\mathfrak F$. The description of reducible $\tau$-closed $\omega$-saturated formations of finite groups with a soluble $l^{\omega}{\tau}$-defect 2 is obtained.
Keywords: formation of finite groups, $\omega$-saturated formation, defect of a formation, lattice of formations, $\tau$-closed formation.
@article{PFMT_2009_1_a9,
     author = {V. G. Safonov and I. N. Safonova},
     title = {On reducible $\tau$-closed $\omega$-saturated formations with a soluble defect 2},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {64--68},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2009_1_a9/}
}
TY  - JOUR
AU  - V. G. Safonov
AU  - I. N. Safonova
TI  - On reducible $\tau$-closed $\omega$-saturated formations with a soluble defect 2
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2009
SP  - 64
EP  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2009_1_a9/
LA  - ru
ID  - PFMT_2009_1_a9
ER  - 
%0 Journal Article
%A V. G. Safonov
%A I. N. Safonova
%T On reducible $\tau$-closed $\omega$-saturated formations with a soluble defect 2
%J Problemy fiziki, matematiki i tehniki
%D 2009
%P 64-68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2009_1_a9/
%G ru
%F PFMT_2009_1_a9
V. G. Safonov; I. N. Safonova. On reducible $\tau$-closed $\omega$-saturated formations with a soluble defect 2. Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 64-68. http://geodesic.mathdoc.fr/item/PFMT_2009_1_a9/

[1] L. A. Shemetkov, A. N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 253 pp. | MR

[2] A. N. Skiba, Algebra formatsii, Belarusskaya navuka, Mn., 1997, 240 pp. | MR | Zbl

[3] A. N. Skiba, L. A. Shemetkov, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. trudy, 2:2 (1999), 114–147 | MR | Zbl

[4] A. N. Skiba, E. A. Targonskii, “Klassifikatsiya lokalnykh formatsii konechnykh grupp s nilpotentnym defektom 2”, Matem. zametki, 41:4 (1987), 490–499 | MR | Zbl

[5] Dzh. Dzhekhad, Klassifikatsiya $p$-lokalnykh formatsii dliny 3, avtoref. ... dis. kand. fiz.-mat. nauk: 02.12.01, Gom. gos. un-t im. F. Skoriny, Gomel, 1996, 15 pp. | MR

[6] N. G. Zhevnova, $\omega$-Lokalnye formatsii s dopolnyaemymi podformatsiyami, avtoref. ... dis. kand. fiz.-mat. nauk: 02.12.01, Gom. gos. un-t im. F. Skoriny, Gomel, 1997, 17 pp.

[7] V. G. Safonov, I. N. Safonova, “O privodimykh $\omega$-nasyschennykh formatsiyakh s razreshimym defektom $\leqslant 2$”, Izvestiya Gomelskogo gos. un-ta im. F. Skoriny, 2005, no. 5 (32), 162–165 | MR

[8] V. G. Safonov, I. N. Safonova, “O $n$-kratno $\omega$-nasyschennykh formatsiyakh s maksimalnoi razreshimoi podformatsiei”, Vestnik Grodnenskogo gos. universiteta. Seriya Matematika, 2008, no. 2, 53–57 | MR

[9] V. G. Safonov, I. N. Safonova, “O $\tau$-zamknutykh $\omega$-nasyschennykh formatsiyakh razreshimogo $l_\tau^\omega$-defekta 1”, Vesnik Vitsebskaga dzyarzhaŭnaga universiteta, 2008, no. 2 (48), 120–125 | MR

[10] V. G. Safonov, A. I. Ryabchenko, “Chastichno nasyschennye formatsii s $\pi$-nilpotentnym defektom 1”, Vestnik Mozyrskogo gos. ped. un-ta, 2005, no. 2 (13), 16–20 | MR | Zbl

[11] A. I. Ryabchenko, “Chastichno nasyschennye formatsii s $\pi$-spetsialnym defektom 1”, Izv. Gomelskogo gos. un-ta im. F. Skoriny, 2006, no. 5, 59–68

[12] V. G. Safonov, A. I. Ryabchenko, “O $\omega$-nasyschennykh formatsiyakh s $\pi$-razlozhimym defektom 1”, Ves. Magileuskaga dzyarzh. un-ta im. A. A. Kulyashova, 2006, no. 4 (25), 204–211 | MR

[13] A. I. Ryabchenko, “O chastichno nasyschennykh formatsiyakh s $X$-defektom 1”, Ves. Nats. akad. navuk Belarusi. Ser. fiz-mat. navuk, 2008, no. 1, 28–34 | MR

[14] A. I. Ryabchenko, “O chastichno nasyschennoi formatsii s maksimalnoi podformatsiei klassicheskogo tipa”, Izv. Gom. gos. un-ta im. F. Skoriny, 2008, no. 5 (50), Ch. 2, 216–222

[15] A. I. Ryabchenko, “K teorii chastichno nasyschennykh formatsii”, Izv. Gom. gos. un-ta im. F. Skoriny, 2008, no. 6 (51), Ch. 2, 153–160

[16] A. N. Skiba, L. A. Shemetkov, “O chastichno lokalnykh formatsiyakh”, Dokl. AN Belarusi, 39:3 (1995), 9–11 | MR

[17] I. P. Shabalina, “O reshetke $\tau$-zamknutykh $n$-kratno $\omega$-lokalnykh formatsii konechnykh grupp”, Vestsi NAN Belarusi, Ser. fiz.-mat. nauk, 2003, no. 1, 28–30 | MR