On multidimensional Bochner-Phillips functional calculus
Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 60-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

The functional calculus of semigroup generators, based on the class of Bernstein functions in several variables is developed, the condition for holomorphy of semigroups, generated by operators which arised in the calculus is given, and the inequality of moments for such operators in the one-dimensional case is proved.
Keywords: semigroup of operators, semigroup generator, functional calculus, Bernstein function.
@article{PFMT_2009_1_a8,
     author = {A. R. Mirotin},
     title = {On multidimensional {Bochner-Phillips} functional calculus},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {60--63},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2009_1_a8/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - On multidimensional Bochner-Phillips functional calculus
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2009
SP  - 60
EP  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2009_1_a8/
LA  - ru
ID  - PFMT_2009_1_a8
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T On multidimensional Bochner-Phillips functional calculus
%J Problemy fiziki, matematiki i tehniki
%D 2009
%P 60-63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2009_1_a8/
%G ru
%F PFMT_2009_1_a8
A. R. Mirotin. On multidimensional Bochner-Phillips functional calculus. Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 60-63. http://geodesic.mathdoc.fr/item/PFMT_2009_1_a8/

[1] A. Kishimoto, D. Robinson, “Subordinate semigroups and order properties”, J. Austral. Math. Soc. (Series A), 31 (1981), 59–76 | DOI | MR | Zbl

[2] C. Berg at al., “Generation of generators of holomorphic semigroups”, J. Austral. Math. Soc. (Series A), 55 (1993), 246–269 | DOI | MR | Zbl

[3] A. S. Carasso, T. Kato, “On subordinated holomorphic semigroups”, Trans. Am. Math. Soc., 327 (1991), 867–878 | DOI | MR | Zbl

[4] A. R. Mirotin, “Deistvie funktsii klassa Shenberga $T$ na konuse dissipativnykh elementov banakhovoi algebry”, Mat. zametki, 61:4 (1997), 630–633 | DOI | MR | Zbl

[5] A. R. Mirotin, “Funktsii klassa Shenberga $T$ deistvuyut v konuse dissipativnykh elementov banakhovoi algebry, II”, Mat. zametki, 64:3 (1998), 423–430 | DOI | MR | Zbl

[6] A. R. Mirotin, “Mnogomernoe $T$-ischislenie ot generatorov $C_0$-polugrupp”, Algebra i analiz, 11:2 (1999), 142–170 | MR

[7] E. I. Pustylnik, “O funktsiyakh pozitivnogo operatora”, Mat. sbornik, 119:1 (1982), 32–47 | MR

[8] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962, 829 pp. | MR

[9] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961, 310 pp. | MR

[10] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika, v. 1, Mir, M., 1982, 511 pp. | MR | Zbl

[11] A. R. Mirotin, “O $T$-ischislenii generatorov $C_0$-polugrupp”, Sibirskii mat. zhurnal, 39:3 (1998), 571–582 | MR | Zbl

[12] N. Burbaki, Integrirovanie. Mery na lokalno kompaktnykh prostranstvakh, Nauka, M., 1977, 600 pp.

[13] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, N.Y., 1983, 472 pp. | MR | Zbl