Rational approximation of Markov functions generated by Borelean power-type measures
Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 69-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic behavior of Pade table rows for Markov functions $\widehat{\mu}(z)$ generated by Borelean power-type measures is found. This enabled us to find sharp decreasing orders of the best approximations of $\widehat{\mu}(z)$ by rational functions with fixed number of poles. The obtained theorems supplement the known results of A.A. Gonchar, T. Ganelius, H. Stahl, D. Braess, A.A. Pekarskii, E.A. Rovba dealing with research of approximating properties of Markov functions.
Keywords: Markov function, rational approximations, best approximations in the uniform norm.
Mots-clés : Pade approximants, polynomial approximations
@article{PFMT_2009_1_a10,
     author = {A. P. Starovoitov and Yu. A. Labych},
     title = {Rational approximation of {Markov} functions generated by {Borelean} power-type measures},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--73},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2009_1_a10/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - Yu. A. Labych
TI  - Rational approximation of Markov functions generated by Borelean power-type measures
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2009
SP  - 69
EP  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2009_1_a10/
LA  - ru
ID  - PFMT_2009_1_a10
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A Yu. A. Labych
%T Rational approximation of Markov functions generated by Borelean power-type measures
%J Problemy fiziki, matematiki i tehniki
%D 2009
%P 69-73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2009_1_a10/
%G ru
%F PFMT_2009_1_a10
A. P. Starovoitov; Yu. A. Labych. Rational approximation of Markov functions generated by Borelean power-type measures. Problemy fiziki, matematiki i tehniki, no. 1 (2009), pp. 69-73. http://geodesic.mathdoc.fr/item/PFMT_2009_1_a10/

[1] A. A. Gonchar, “O skorosti ratsionalnoi approksimatsii analiticheskikh funktsii”, Matem. sbornik, 105 (147):2 (1978), 147–163 | MR | Zbl

[2] T. Ganelius, “Ortogonal polynomials and rational approximation of holomorphic function”, To the Memory of Paul Turan, Studies in Pure Mathematics, Birkhäuser Verlag, Basel, 1978, 237–243 | MR

[3] H. Stahl, “Best Rational Approximants to Markov Function”, Colloquia Math. Soc Janos Bolai. Racskement (Hungary), 58, 1990, 627–643 | MR

[4] D. Braess, “Rational Approximation of Stieltjes by the Caratheodory–Fejer Method”, Constr. Appr., 3 (1987), 43–50 | DOI | MR | Zbl

[5] J.-E. Andersson, “Rational approximation to function like $x^\alpha$ in integral norms”, Anal. Math., 14:1 (1988), 11–25 | DOI | MR | Zbl

[6] A. A. Pekarskii, “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7:2 (1995), 121–132 | MR

[7] A. A. Pekarskii, E. A. Rovba, “Ravnomernye priblizheniya funktsii Stiltesa posredstvom ortoproektsii na mnozhestvo ratsionalnykh funktsii”, Mat. zametki, 65:3 (1999), 362–368 | DOI | MR | Zbl

[8] N. S. Vyacheslavov, “Ratsionalnye priblizheniya funktsii tipa Markova–Stiltesa v prostranstvakh Khardi $H^p$, $0

\leqslant\infty$”, Vestn. Mosk. un-ta. Seriya 1. Matematika. Mekhanika, 2008, no. 4, 3–13 | MR

[9] Dzh. Beiker, P. Greivs-Morris, Approksimatsii Pade, Mir, M., 1986 | MR

[10] A. P. Starovoitov, N. A. Starovoitova, “Ob asimptotike strok tablitsy Pade analiticheskikh funktsii s logarifmicheskimi tochkami vetvleniya”, Matem. zametki, 84:3 (2008), 409–419 | DOI | MR | Zbl

[11] V. K. Dzyadyk, “Ob asimptotike diagonalnykh approksimatsii Pade funktsii $\sin z$, $\cos z$, $\sh$ i $\ch z$”, Matem. sb., 108(150):2 (1979), 247–267 | MR | Zbl