On the existence of directed strongly regular graphs with parameters $(22, 9, 6, 3, 4)$
Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 86-96
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper shows the existence of the family of directed strongly regular graphs with parameters $(22, 9, 6, 3, 4)$. The adjacency matrices of the found digraphs consist of $3\times 3$ circulant blocks. The automorphism group of all the digraphs found is the group $\mathbb{Z}_3$. The structure of the resulting digraphs has been described using the concepts of skeleton and rigging.
Keywords:
directed strongly regular graph, isomorphic digraphs.
Mots-clés : circulant matrix, compactification of matrices, automorphism group
Mots-clés : circulant matrix, compactification of matrices, automorphism group
@article{PDM_2024_4_a7,
author = {V. A. Byzov and I. A. Pushkarev},
title = {On the existence of directed strongly regular graphs with parameters $(22, 9, 6, 3, 4)$},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {86--96},
publisher = {mathdoc},
number = {4},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2024_4_a7/}
}
TY - JOUR AU - V. A. Byzov AU - I. A. Pushkarev TI - On the existence of directed strongly regular graphs with parameters $(22, 9, 6, 3, 4)$ JO - Prikladnaâ diskretnaâ matematika PY - 2024 SP - 86 EP - 96 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2024_4_a7/ LA - ru ID - PDM_2024_4_a7 ER -
V. A. Byzov; I. A. Pushkarev. On the existence of directed strongly regular graphs with parameters $(22, 9, 6, 3, 4)$. Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 86-96. http://geodesic.mathdoc.fr/item/PDM_2024_4_a7/