Mots-clés : circulant matrix, compactification of matrices, automorphism group
@article{PDM_2024_4_a7,
author = {V. A. Byzov and I. A. Pushkarev},
title = {On the existence of directed strongly regular graphs with parameters $(22, 9, 6, 3, 4)$},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {86--96},
year = {2024},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2024_4_a7/}
}
V. A. Byzov; I. A. Pushkarev. On the existence of directed strongly regular graphs with parameters $(22, 9, 6, 3, 4)$. Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 86-96. http://geodesic.mathdoc.fr/item/PDM_2024_4_a7/
[1] Duval A. M., “A directed graph version of strongly regular graphs”, J. Combinat. Theory. Ser. A, 47:1 (1988), 71–100 | DOI | MR | Zbl
[2] Brouwer A. E. and Maldeghem H. V., Strongly Regular Graphs, Cambridge University Press, Cambridge, 2022, 425 pp. | MR | Zbl
[3] Parameters of directed strongly regular graphs, , 2024 https://homepages.cwi.nl/ãeb/math/dsrg/dsrg.html
[4] Brouwer A. E., Crnkovic D., and Svob A., A Construction of Directed Strongly Regular Graphs with Parameters (63,11,8,1,2), 2024, arXiv: 2404.03100v2 | MR
[5] Kra I. and Simanca S. R., “On circulant matrices”, Notices Amer. Math. Soc., 59:3 (2012), 368–377 | DOI | MR | Zbl
[6] Shrikhande S. S., “The uniqueness of the $\mathrm{L}_2$ association scheme”, Ann. Math. Statistics, 30:3 (1959), 781–798 | DOI | MR | Zbl
[7] Gritsenko O., On Strongly Regular Graph with Parameters (65; 32; 15; 16), 2021, arXiv: 2102.05432 | Zbl
[8] Artelys Kalis, , 2024 https://www.artelys.com/solvers/kalis/
[9] Hagberg A. A., Schult D. A., and Swart P. J., “Exploring network structure, dynamics, and function using NetworkX”, Proc. SciPy 2008 (Pasadena, California, August 19–24, 2008), 11–15