Periodic multiplicative arithmetic functions
Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 30-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notions of a periodic multiplicative function, the main modulus of such function, and the simplest periodic multiplicative function have been introduced. The basic properties of periodic multiplicative functions are studied, and a complete description of such functions through Dirichlet characters is given. In particular, it has been proven that any periodic multiplicative function other than unitary can be uniquely represented as a product of the simplest periodic multiplicative functions, and the principal modules of such functions are powers of prime numbers, the product of which is the canonical decomposition of the principal module of the original function. Based on this representation, the study of periodic multiplicative functions is reduced to the study of the simplest periodic multiplicative functions. The obtained results lead to a complete description of periodic multiplicative functions.
Keywords: arithmetic function, periodic multiplicative function, Dirichlet character, Dirichlet $L$-function.
@article{PDM_2024_4_a2,
     author = {E. V. Kaygorodov},
     title = {Periodic multiplicative arithmetic functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {30--35},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2024_4_a2/}
}
TY  - JOUR
AU  - E. V. Kaygorodov
TI  - Periodic multiplicative arithmetic functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2024
SP  - 30
EP  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2024_4_a2/
LA  - ru
ID  - PDM_2024_4_a2
ER  - 
%0 Journal Article
%A E. V. Kaygorodov
%T Periodic multiplicative arithmetic functions
%J Prikladnaâ diskretnaâ matematika
%D 2024
%P 30-35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2024_4_a2/
%G ru
%F PDM_2024_4_a2
E. V. Kaygorodov. Periodic multiplicative arithmetic functions. Prikladnaâ diskretnaâ matematika, no. 4 (2024), pp. 30-35. http://geodesic.mathdoc.fr/item/PDM_2024_4_a2/

[1] Chudakov N. G., Introduction to the theory of Dirichlet L-functions, OGIZ Publ., M., 1947, 202 pp. (In Russian) | MR

[2] Kanold H. J., “Über periodische multiplikative zahlentheoretische Funktionen”, Math. Ann., 144 (1961), 135–141 (in German) | DOI | MR | Zbl

[3] Kanold H. J., “Über periodische zahlentheoretische Funktionen”, Math. Ann., 147 (1962), 269–274 (in German) | DOI | MR | Zbl

[4] Frank W. O., Daniel W. L., Ronald F. B., and Charles W. C., NIST Handbook of Mathematical Functions, 1st. ed., Cambridge University Press, Cambridge, 2010, 966 pp. | Zbl

[5] Conci A. and MacHenry T., “Cryptography and multiplicative arithmetic functions”, 2015 IEEE Intern. Conf. on Industrial Technology (ICIT) (Seville, Spain, 2015), 1515–1519

[6] Yan B., Tan Z., Wei S., et al., Factoring Integers with Sublinear Resources on a Superconducting Quantum Processor, 2022, arXiv: 2212.12372