Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2023_4_a8, author = {A. N. Rybalov}, title = {On the generic complexity of the square root modulo~prime problem}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {119--123}, publisher = {mathdoc}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2023_4_a8/} }
A. N. Rybalov. On the generic complexity of the square root modulo~prime problem. Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 119-123. http://geodesic.mathdoc.fr/item/PDM_2023_4_a8/
[1] Cipolla M., “Un metodo per la risoluzione della congruenza di secondo grado”, Rendiconto dell' Accademia delle Scienze Fisiche e Matematiche. Napoli, 10:3 (1904), 144–150 (in Italian)
[2] Ankeny N. C., “The least quadratic non residue”, Ann. Math., 55 (1952), 65–72 | DOI | MR | Zbl
[3] Kapovich I., Miasnikov A., Schupp P., and Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[4] Adleman L. M. and McCurley K. S., “Open problems in number theoretic complexity, II”, LNCS, 877, 1994, 291–322 | MR | Zbl
[5] Rybalov A. N., “On generic complexity of the quadratic residuosity problem”, Prikladnaya Diskretnaya Matematika, 2015, no. 2(28), 54–58 (in Russian) | MR
[6] Erdos P., “Remarks on number theory I”, Mat. Lapok, 12 (1961), 10–17 | MR | Zbl