Weight distribution of low-density periodic random errors and their correcting codes with error decoding probability
Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 106-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present weight distribution of low-density periodic random errors in the space of all $q$-ary $n$-tuples along with the average Hamming weight of the error set. We also provide necessary and sufficient conditions for the existence of linear codes correcting such error pattern. Examples of such codes are given. Finally, probability of decoding error of such codes over a binary symmetric channel is derived.
Keywords: parity-check matrix, periodic random error, error decoding probability.
Mots-clés : syndromes
@article{PDM_2023_4_a7,
     author = {L. Haokip and P. K. Das},
     title = {Weight distribution of low-density periodic random errors and their correcting codes with error decoding probability},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {106--118},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2023_4_a7/}
}
TY  - JOUR
AU  - L. Haokip
AU  - P. K. Das
TI  - Weight distribution of low-density periodic random errors and their correcting codes with error decoding probability
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2023
SP  - 106
EP  - 118
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2023_4_a7/
LA  - en
ID  - PDM_2023_4_a7
ER  - 
%0 Journal Article
%A L. Haokip
%A P. K. Das
%T Weight distribution of low-density periodic random errors and their correcting codes with error decoding probability
%J Prikladnaâ diskretnaâ matematika
%D 2023
%P 106-118
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2023_4_a7/
%G en
%F PDM_2023_4_a7
L. Haokip; P. K. Das. Weight distribution of low-density periodic random errors and their correcting codes with error decoding probability. Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 106-118. http://geodesic.mathdoc.fr/item/PDM_2023_4_a7/

[1] Lange N., “Error correcting codes on periodically disturbed data channels”, Proc. IEEE Intern. Symp. Inform. Theory (Trondheim, Norway, 1994), 33

[2] Das P. K., “Codes on $s$-periodic random errors of length $b$”, Palestine J. Math., 3:2 (2014), 168–174 | MR | Zbl

[3] Das P. K. and Haokip L., “Correction and weight distribution of periodic random errors”, Science $\$ Technology Asia, 26:4 (2021), 38–47 | MR

[4] Wyner A. D., “Low-density-burst-correcting codes”, IEEE Trans. Inform. Theory, 9:2 (1963), 124 | DOI | Zbl

[5] Fire P., A Class of Multiple-error-correcting Binary Codes for Non-independent Errors, Stanford University, 1959, 104 pp.

[6] Das P. K. and Haokip L., “Periodical burst error correcting codes with decoding error probability”, Discr. Math. Lett., 8 (2022), 49–56 | MR | Zbl

[7] Sack G. E., “Multiple burst error correction by means of parity-checks”, IRE Trans. Inform. Theory, 4:4 (1958), 145–147 | DOI | MR

[8] Peterson W. W. and Weldon E. J., Error Correcting Codes, 2nd ed., MIT Press, Cambridge, Massachusetts, 1972 | MR