Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2023_4_a7, author = {L. Haokip and P. K. Das}, title = {Weight distribution of low-density periodic random errors and their correcting codes with error decoding probability}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {106--118}, publisher = {mathdoc}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PDM_2023_4_a7/} }
TY - JOUR AU - L. Haokip AU - P. K. Das TI - Weight distribution of low-density periodic random errors and their correcting codes with error decoding probability JO - Prikladnaâ diskretnaâ matematika PY - 2023 SP - 106 EP - 118 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2023_4_a7/ LA - en ID - PDM_2023_4_a7 ER -
%0 Journal Article %A L. Haokip %A P. K. Das %T Weight distribution of low-density periodic random errors and their correcting codes with error decoding probability %J Prikladnaâ diskretnaâ matematika %D 2023 %P 106-118 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2023_4_a7/ %G en %F PDM_2023_4_a7
L. Haokip; P. K. Das. Weight distribution of low-density periodic random errors and their correcting codes with error decoding probability. Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 106-118. http://geodesic.mathdoc.fr/item/PDM_2023_4_a7/
[1] Lange N., “Error correcting codes on periodically disturbed data channels”, Proc. IEEE Intern. Symp. Inform. Theory (Trondheim, Norway, 1994), 33
[2] Das P. K., “Codes on $s$-periodic random errors of length $b$”, Palestine J. Math., 3:2 (2014), 168–174 | MR | Zbl
[3] Das P. K. and Haokip L., “Correction and weight distribution of periodic random errors”, Science $\$ Technology Asia, 26:4 (2021), 38–47 | MR
[4] Wyner A. D., “Low-density-burst-correcting codes”, IEEE Trans. Inform. Theory, 9:2 (1963), 124 | DOI | Zbl
[5] Fire P., A Class of Multiple-error-correcting Binary Codes for Non-independent Errors, Stanford University, 1959, 104 pp.
[6] Das P. K. and Haokip L., “Periodical burst error correcting codes with decoding error probability”, Discr. Math. Lett., 8 (2022), 49–56 | MR | Zbl
[7] Sack G. E., “Multiple burst error correction by means of parity-checks”, IRE Trans. Inform. Theory, 4:4 (1958), 145–147 | DOI | MR
[8] Peterson W. W. and Weldon E. J., Error Correcting Codes, 2nd ed., MIT Press, Cambridge, Massachusetts, 1972 | MR