Algebraic-geometry codes and decoding by error-correcting pairs
Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 83-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the basic theory of algebraic curves and their function fields necessary for constructing algebraic geometry codes and a pair of codes forming an error-correction pair which is used in a precomputation step of the decoding algorithm for the algebraic geometry codes. Also, we consider the decoding algorithm and give the necessary theory to prove its correctness. As a result, we consider elliptic curves, Hermitian curves and Klein quartics and construct the algebraic geometry codes associated with these families of curves, and also explicitly define the error-correcting pairs for the resulting codes.
Keywords: algebraic geometry code, function field, divisor, error-correcting pair, decoding of algebraic geometry code, elliptic curve, Hermitian curve
Mots-clés : Klein quartic.
@article{PDM_2023_4_a6,
     author = {E. S. Malygina and A. A. Kuninets and V. L. Ratochka and A. G. Duplenko and D. Y. Neyman},
     title = {Algebraic-geometry codes and decoding by error-correcting pairs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {83--105},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2023_4_a6/}
}
TY  - JOUR
AU  - E. S. Malygina
AU  - A. A. Kuninets
AU  - V. L. Ratochka
AU  - A. G. Duplenko
AU  - D. Y. Neyman
TI  - Algebraic-geometry codes and decoding by error-correcting pairs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2023
SP  - 83
EP  - 105
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2023_4_a6/
LA  - ru
ID  - PDM_2023_4_a6
ER  - 
%0 Journal Article
%A E. S. Malygina
%A A. A. Kuninets
%A V. L. Ratochka
%A A. G. Duplenko
%A D. Y. Neyman
%T Algebraic-geometry codes and decoding by error-correcting pairs
%J Prikladnaâ diskretnaâ matematika
%D 2023
%P 83-105
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2023_4_a6/
%G ru
%F PDM_2023_4_a6
E. S. Malygina; A. A. Kuninets; V. L. Ratochka; A. G. Duplenko; D. Y. Neyman. Algebraic-geometry codes and decoding by error-correcting pairs. Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 83-105. http://geodesic.mathdoc.fr/item/PDM_2023_4_a6/

[1] Goppa V. D., “Codes associated with divisors”, Problemy Peredachi Informatsii, 13:1 (1977), 33–39 (in Russian) | MR | Zbl

[2] Tsfasman M. A., Vlădutx S. G., and Zink Th., “Modular curves, Shimura curves and Goppa codes, better than Varshamov — Gilbert bound”, Math. Nachr., 109 (1982), 21–28 | DOI | MR | Zbl

[3] Ihara Y., “Some remarks on the number of rational points of algebraic curves over finite fields”, J. Fac. Sci. Univ. Tokyo. Sect. IA Math., 28 (1981), 721–724 | MR | Zbl

[4] Garcia A. and Stichtenoth H., “A tower of Artin — Schreier extensions of function fields attaining the Drinfeld — Vladut bound”, Inventiones Mathematicae, 121 (1995), 211–222 | DOI | MR | Zbl

[5] Cox D., Little J., and O'Shea D., Ideals, Varieties and Algorithms, Springer Verlag, 1992 | MR | Zbl

[6] Stichtenoth H., Algebraic Function Fields and Codes, Springer Verlag, 1991 | MR

[7] Guruswami V. and Sudan M., “Improved decoding of Reed — Solomon and algebraic geometry codes”, IEEE Trans. Inform. Theory, 45 (1999), 1757–1768 | DOI | MR

[8] Couvreur A., Márquez-Corbella I., and Pellikaan R., “Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes”, IEEE Trans. Inform. Theory, 63 (2017), 5404–5418 | DOI | MR | Zbl

[9] Pellikaan R., “On decoding by error location and dependent sets of error positions”, Discrete Math., 106–107 (1992), 113–121 | MR

[10] Márquez-Corbella I. and Pellikaan R., “Error-correcting pairs: a new approach to code-based cryptography”, 20th Conf. ACA 2014 (Jul. 2014, New York, USA) https://hal.science/hal-01088433/document

[11] Pellikaan R., “On the existence of error-correcting pairs”, Statistical Planning Inference, 51 (1996), 229–242 | DOI | MR | Zbl

[12] Couvreur A., Panaccione I., Power Error Locating Pairs, arXiv: 1907.11658v3

[13] Wesemeyer S., “On the automorphism group of various Goppa codes”, IEEE Trans. Inform. Theory, 44:2 (1998), 630–643 | DOI | MR | Zbl