The influence of the iteration process on the structure of the graph $G_\pi$ of the uniform random substitution $\pi\colon S\to S$ is studied. Exact formulas are written out for the distribution of the length $\beta_{\pi}\left(x\right)$ of the cycle $\mathcal{K}_{\pi}\left(x\right)$ containing an arbitrary fixed vertex $x\in S$. An expression is written for the mathematical expectation of a random variable $\lambda_{\pi^k}\left(l\right)$ equal to the number of vertices in the graph $G_{\pi^k}$ lying on cycles of length $l\in \{1,\ldots,|S|\}$. For $k\in\mathbb{N}$ and arbitrary fixed vertices $x,y\in S$, $x\ne y$, the joint probability of their falling on cycles of fixed lengths in the graph $G_{\pi^k}$ is calculated.
@article{PDM_2023_4_a0,
author = {V. O. Mironkin},
title = {On the distribution of cycle lengths in the graph of~$k$-multiple iteration of~the uniform random substitution},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {5--12},
year = {2023},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2023_4_a0/}
}
TY - JOUR
AU - V. O. Mironkin
TI - On the distribution of cycle lengths in the graph of $k$-multiple iteration of the uniform random substitution
JO - Prikladnaâ diskretnaâ matematika
PY - 2023
SP - 5
EP - 12
IS - 4
UR - http://geodesic.mathdoc.fr/item/PDM_2023_4_a0/
LA - ru
ID - PDM_2023_4_a0
ER -
%0 Journal Article
%A V. O. Mironkin
%T On the distribution of cycle lengths in the graph of $k$-multiple iteration of the uniform random substitution
%J Prikladnaâ diskretnaâ matematika
%D 2023
%P 5-12
%N 4
%U http://geodesic.mathdoc.fr/item/PDM_2023_4_a0/
%G ru
%F PDM_2023_4_a0
V. O. Mironkin. On the distribution of cycle lengths in the graph of $k$-multiple iteration of the uniform random substitution. Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 5-12. http://geodesic.mathdoc.fr/item/PDM_2023_4_a0/
[1] Kolchin V. F., Random Mappings, Nauka Publ., M., 1984 (in Russian)
[2] Sachkov V. N., Probabilistic Methods in Combinatorial Analysis, Nauka Publ., M., 1978 (in Russian) | MR
[3] Flajolet P. and Odlyzko A., “Random mapping statistics”, LNCS, 434, 1989, 329–354 | MR
[4] Harris B., “Probability distributions related to random mapping”, Ann. Math. Statist., 31:4 (1960), 1045–1062 | DOI | MR | Zbl
[5] Mironkin V. O., “On the layers in the graph of $k$-fold iteration of uniform random mapping”, Mat. Vopr. Kriptogr., 10:1 (2019), 73–82 (in Russian) | DOI | MR | Zbl
[6] Mironkin V. O., “Layers in a graph of the composition of independent uniform random mappings”, Mat. Vopr. Kriptogr., 11:1 (2020), 101–114 (in Russian) | DOI | MR | Zbl