On the distribution of cycle lengths in the graph of~$k$-multiple iteration of~the uniform random substitution
Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 5-12
Voir la notice de l'article provenant de la source Math-Net.Ru
The influence of the iteration process on the structure of the graph $G_\pi$ of the uniform random substitution $\pi\colon S\to S$ is studied. Exact formulas are written out for the distribution of the length $\beta_{\pi}\left(x\right)$ of the cycle $\mathcal{K}_{\pi}\left(x\right)$ containing an arbitrary fixed vertex $x\in S$. An expression is written for the mathematical expectation of a random variable $\lambda_{\pi^k}\left(l\right)$ equal to the number of vertices in the graph $G_{\pi^k}$ lying on cycles of length $l\in \{1,\ldots,|S|\}$. For $k\in\mathbb{N}$ and arbitrary fixed vertices $x,y\in S$, $x\ne y$, the joint probability of their falling on cycles of fixed lengths in the graph $G_{\pi^k}$ is calculated.
Keywords:
uniform random substitution, iteration of a substitution, graph of a substitution, distribution of cycle lengths, fixed points.
@article{PDM_2023_4_a0,
author = {V. O. Mironkin},
title = {On the distribution of cycle lengths in the graph of~$k$-multiple iteration of~the uniform random substitution},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {5--12},
publisher = {mathdoc},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2023_4_a0/}
}
TY - JOUR AU - V. O. Mironkin TI - On the distribution of cycle lengths in the graph of~$k$-multiple iteration of~the uniform random substitution JO - Prikladnaâ diskretnaâ matematika PY - 2023 SP - 5 EP - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2023_4_a0/ LA - ru ID - PDM_2023_4_a0 ER -
V. O. Mironkin. On the distribution of cycle lengths in the graph of~$k$-multiple iteration of~the uniform random substitution. Prikladnaâ diskretnaâ matematika, no. 4 (2023), pp. 5-12. http://geodesic.mathdoc.fr/item/PDM_2023_4_a0/