Solving of the maxisum location problem on network with a restriction on transport costs
Prikladnaâ diskretnaâ matematika, no. 2 (2023), pp. 120-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the optimal location of a facility on an undirected weighted network. A positive weight is assigned to each edge. Two positive parameters are assigned to the vertices. The first parameter reflects the requirement to place the facility as close to the vertex as possible, and the second — as far as possible. There is a limit on the total weighted distance from the facility to the vertices, taking into account the first parameter. It is necessary to find acceptable locations of the facility on the edges of the network with the maximum sum of weighted distances from them to the vertices, taking into account the second parameter (local extremes). A polynomial algorithm is proposed to find all local extremums at the edges of the network.
Keywords: location problem, maxisum criterion, undesirable facility, network.
@article{PDM_2023_2_a10,
     author = {G. G. Zabudsky},
     title = {Solving of the maxisum location problem on network with a restriction on transport costs},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {120--127},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2023_2_a10/}
}
TY  - JOUR
AU  - G. G. Zabudsky
TI  - Solving of the maxisum location problem on network with a restriction on transport costs
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2023
SP  - 120
EP  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2023_2_a10/
LA  - ru
ID  - PDM_2023_2_a10
ER  - 
%0 Journal Article
%A G. G. Zabudsky
%T Solving of the maxisum location problem on network with a restriction on transport costs
%J Prikladnaâ diskretnaâ matematika
%D 2023
%P 120-127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2023_2_a10/
%G ru
%F PDM_2023_2_a10
G. G. Zabudsky. Solving of the maxisum location problem on network with a restriction on transport costs. Prikladnaâ diskretnaâ matematika, no. 2 (2023), pp. 120-127. http://geodesic.mathdoc.fr/item/PDM_2023_2_a10/

[1] Tamir A., “Obnoxious facility location on graphs”, SIAM J. Discrete Math., 4:4 (1991), 550–567 | DOI | MR | Zbl

[2] Drezner Z., Facility Location. A Survey of Applications and Methods, Springer, N.Y., 1995, 571 pp. | MR

[3] Eiselt H. A. and Marianov V., Foundations of Location Analysis, Springer, N.Y., 2011, 509 pp. | MR | Zbl

[4] Zabudsky G. G. and Lisina M. S., “Approximately algorithm for maximin location problem on network”, Dynamics of Systems, Mechanisms and Machines, XII Intern. Conf. (Omsk, Russia, 13–15 November, 2018), 2018 https://ieeexplore.ieee.org/document/8601502

[5] Church R. L. and Garfinkel R. S., “Locating an obnoxious facility on a network”, Trans. Sci., 12:2 (1978), 107–118 | DOI | MR

[6] Hakimi S. L., “Optimal location of switching centers and the absolute centers and medians of a graph”, Oper. Res., 12:3 (1964), 450–459 | DOI | Zbl

[7] Berman O. and Drezner Z., “A note on the location of an obnoxious facility on a network”, Eur. J. Oper. Res., 120:1 (2000), 215–217 | DOI | MR | Zbl

[8] Zabudskiy G. G., “Location an undesirable facility on the network with a restriction on transportation costs”, Mechanical Science and Technology Update, VI Intern. Conf. (Omsk, Russia, 22–23 March, 2022), 162–165 (in Russian)

[9] Heydari R. and Melachrinoudis E., “Location of a semi-obnoxious facility with elliptic maxmin and network minisum objectives”, Eur. J. Oper. Res., 223:2 (2012), 452–460 | DOI | MR | Zbl

[10] Hu T. C., Integer Programming and Network Flows, Addison-Wesley Publ., 1969, 452 pp. | MR