Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2022_4_a1, author = {V. G. Mikhailov and N. M. Mezhennaya}, title = {About the rate of normal approximation for~the~distribution of the number of repetitions in~a~stationary discrete random sequence}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {15--21}, publisher = {mathdoc}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2022_4_a1/} }
TY - JOUR AU - V. G. Mikhailov AU - N. M. Mezhennaya TI - About the rate of normal approximation for~the~distribution of the number of repetitions in~a~stationary discrete random sequence JO - Prikladnaâ diskretnaâ matematika PY - 2022 SP - 15 EP - 21 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2022_4_a1/ LA - ru ID - PDM_2022_4_a1 ER -
%0 Journal Article %A V. G. Mikhailov %A N. M. Mezhennaya %T About the rate of normal approximation for~the~distribution of the number of repetitions in~a~stationary discrete random sequence %J Prikladnaâ diskretnaâ matematika %D 2022 %P 15-21 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2022_4_a1/ %G ru %F PDM_2022_4_a1
V. G. Mikhailov; N. M. Mezhennaya. About the rate of normal approximation for~the~distribution of the number of repetitions in~a~stationary discrete random sequence. Prikladnaâ diskretnaâ matematika, no. 4 (2022), pp. 15-21. http://geodesic.mathdoc.fr/item/PDM_2022_4_a1/
[1] Ivanov M. A. and Chugunkov I. V., Theory, Application and Evaluation of the Quality of Pseudo-Random Sequence Generators, KUDITs-OBRAZ, M., 2003, 240 pp. (in Russian)
[2] Rukhin A., Soto J., Nechvatal J., et al., A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST, Apr. 2010 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
[3] Mikhailov V. G., “A Poisson-type limit theorem for the number of pairs of matching sequences”, Theory of Probability and its Appl., 53:1 (2009), 106–116 | DOI | MR
[4] Mikhaylov V. G. and Shoytov A. M., “On the numbers of equivalent tuples sets in a sequence of independent random variables”, Matematicheskie Voprosy Kriptografii, 4:1 (2013), 77–86 (in Russian) | MR
[5] Shoytov A. M., “Normal approximation in a problem on equivalent tuples”, Trudy po Diskretnoy Matematike, 10 (2007), 326–349 (in Russian)
[6] Mikhailov V. G., “Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain”, Discr. Math. Appl., 26:2 (2016), 105–113 | MR | MR
[7] Mikhailov V. G. and Shoitov A. M., “On repetitions of long tuples in a Markov chain”, Discr. Math. Appl., 25:5 (2015), 295–303 | MR
[8] Mikhaylov V. G. and Shoytov A. M., “On multiple repetitions of long tuples in a Markov chain”, Matematicheskie Voprosy Kriptografii, 6:3 (2015), 117–134 (in Russian) | MR
[9] Mikhaylov V. G., Mezhennaya N. M., and Volgin A. V., “Conditions for asymptotic normality of the number of repetitions in a discrete stationary random sequence”, Diskretnaya Matematika, 33:3 (2021), 64–78
[10] Ibragimov I. A. and Linnik. Yu. V., Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, Netherlands, 1971 | MR