About the rate of normal approximation for~the~distribution of the number of repetitions in~a~stationary discrete random sequence
Prikladnaâ diskretnaâ matematika, no. 4 (2022), pp. 15-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the problem of asymptotic normality of the number of $r$-fold repetitions of characters in a segment of a (strictly) stationary discrete random sequence on the set $\{1,2,\ldots,N\}$ with the uniformly strong mixing property. It is shown that in the case when the uniformly strong mixing coefficient $\varphi(t)$ for an arbitrarily given $\alpha> 0$ decreases as $t^{-6-\alpha}$, then the distance in the uniform metric between the distribution function of the number of repetitions and the distribution function of the standard normal law decreases at a rate of $O(n^{-\delta})$ with increasing sequence length $n$ for any $\delta \in (0;\alpha (32+4\alpha)^{-1 }))$.
Keywords: normal approximation, number of multiple repetitions, stationary random sequence, uniformly strong mixing, distance in uniform metric.
@article{PDM_2022_4_a1,
     author = {V. G. Mikhailov and N. M. Mezhennaya},
     title = {About the rate of normal approximation for~the~distribution of the number of repetitions in~a~stationary discrete random sequence},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {15--21},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2022_4_a1/}
}
TY  - JOUR
AU  - V. G. Mikhailov
AU  - N. M. Mezhennaya
TI  - About the rate of normal approximation for~the~distribution of the number of repetitions in~a~stationary discrete random sequence
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2022
SP  - 15
EP  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2022_4_a1/
LA  - ru
ID  - PDM_2022_4_a1
ER  - 
%0 Journal Article
%A V. G. Mikhailov
%A N. M. Mezhennaya
%T About the rate of normal approximation for~the~distribution of the number of repetitions in~a~stationary discrete random sequence
%J Prikladnaâ diskretnaâ matematika
%D 2022
%P 15-21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2022_4_a1/
%G ru
%F PDM_2022_4_a1
V. G. Mikhailov; N. M. Mezhennaya. About the rate of normal approximation for~the~distribution of the number of repetitions in~a~stationary discrete random sequence. Prikladnaâ diskretnaâ matematika, no. 4 (2022), pp. 15-21. http://geodesic.mathdoc.fr/item/PDM_2022_4_a1/

[1] Ivanov M. A. and Chugunkov I. V., Theory, Application and Evaluation of the Quality of Pseudo-Random Sequence Generators, KUDITs-OBRAZ, M., 2003, 240 pp. (in Russian)

[2] Rukhin A., Soto J., Nechvatal J., et al., A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST, Apr. 2010 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

[3] Mikhailov V. G., “A Poisson-type limit theorem for the number of pairs of matching sequences”, Theory of Probability and its Appl., 53:1 (2009), 106–116 | DOI | MR

[4] Mikhaylov V. G. and Shoytov A. M., “On the numbers of equivalent tuples sets in a sequence of independent random variables”, Matematicheskie Voprosy Kriptografii, 4:1 (2013), 77–86 (in Russian) | MR

[5] Shoytov A. M., “Normal approximation in a problem on equivalent tuples”, Trudy po Diskretnoy Matematike, 10 (2007), 326–349 (in Russian)

[6] Mikhailov V. G., “Estimates of accuracy of the Poisson approximation for the distribution of number of runs of long string repetitions in a Markov chain”, Discr. Math. Appl., 26:2 (2016), 105–113 | MR | MR

[7] Mikhailov V. G. and Shoitov A. M., “On repetitions of long tuples in a Markov chain”, Discr. Math. Appl., 25:5 (2015), 295–303 | MR

[8] Mikhaylov V. G. and Shoytov A. M., “On multiple repetitions of long tuples in a Markov chain”, Matematicheskie Voprosy Kriptografii, 6:3 (2015), 117–134 (in Russian) | MR

[9] Mikhaylov V. G., Mezhennaya N. M., and Volgin A. V., “Conditions for asymptotic normality of the number of repetitions in a discrete stationary random sequence”, Diskretnaya Matematika, 33:3 (2021), 64–78

[10] Ibragimov I. A. and Linnik. Yu. V., Independent and Stationary Sequences of Random Variables, Wolters-Noordhoff, Groningen, Netherlands, 1971 | MR