Short single fault detection tests for logic networks under arbitrary faults of gates
Prikladnaâ diskretnaâ matematika, no. 1 (2022), pp. 59-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

It was proved that one can implement any non-constant Boolean function in $n$ variables by an irredundant logic network in the basis $\{\,\oplus,\neg\}$, allowing, when $n\geqslant 3$, a single fault detection test with length not more than $6n-10$ relative to arbitrary faults of gates.
Keywords: logic network, Boolean function, fault, single fault detection test.
@article{PDM_2022_1_a3,
     author = {K. A. Popkov},
     title = {Short single fault detection tests for logic networks under arbitrary faults of gates},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {59--76},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2022_1_a3/}
}
TY  - JOUR
AU  - K. A. Popkov
TI  - Short single fault detection tests for logic networks under arbitrary faults of gates
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2022
SP  - 59
EP  - 76
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2022_1_a3/
LA  - ru
ID  - PDM_2022_1_a3
ER  - 
%0 Journal Article
%A K. A. Popkov
%T Short single fault detection tests for logic networks under arbitrary faults of gates
%J Prikladnaâ diskretnaâ matematika
%D 2022
%P 59-76
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2022_1_a3/
%G ru
%F PDM_2022_1_a3
K. A. Popkov. Short single fault detection tests for logic networks under arbitrary faults of gates. Prikladnaâ diskretnaâ matematika, no. 1 (2022), pp. 59-76. http://geodesic.mathdoc.fr/item/PDM_2022_1_a3/

[1] I. A. Chegis, S. V. Yablonskii, “Logicheskie sposoby kontrolya raboty elektricheskikh skhem”, Trudy MIAN, 51, 1958, 270–360 | MR | Zbl

[2] S. V. Yablonskii, “Nadezhnost i kontrol upravlyayuschikh sistem”, Materialy Vsesoyuz. seminara po diskretnoi matematike i ee prilozheniyam (Moskva, 31 yanvarya–2 fevralya 1984 g.), Izd-vo MGU, M., 1986, 7–12

[3] S. V. Yablonskii, “Nekotorye voprosy nadezhnosti i kontrolya upravlyayuschikh sistem”, Matematicheskie voprosy kibernetiki, 1, Nauka, M., 1988, 5–25

[4] N. P. Redkin, Nadezhnost i diagnostika skhem, Izd-vo MGU, M., 1992, 192 pp.

[5] Borodina Yu. V., “O skhemakh, dopuskayuschikh edinichnye testy dliny 1 pri konstantnykh neispravnostyakh na vykhodakh elementov”, Vestnik Moskovskogo universiteta. Ser. 1. Matematika. Mekhanika, 2008, no. 5, 49–52 | MR | Zbl

[6] K. A. Popkov, “Nizhnie otsenki dlin edinichnykh testov dlya skhem iz funktsionalnykh elementov”, Diskretnaya matematika, 29:2 (2017), 53–69

[7] K. A. Popkov, “Edinichnye proveryayuschie testy dlya skhem iz funktsionalnykh elementov v bazise «kon'yunktsiya-otritsanie»”, Prikladnaya diskretnaya matematika, 2017, no. 38, 66–88 | Zbl

[8] S. M. Reddy, “Easily testable realizations for logic functions”, IEEE Trans. Comput., C-21:11 (1972), 1183–1188 | DOI | MR

[9] S. S. Kolyada, “Edinichnye proveryayuschie testy dlya skhem iz funktsionalnykh elementov”, Vestnik Moskovskogo universiteta. Ser. 1. Matematika. Mekhanika, 2013, no. 4, 32–34 | Zbl

[10] S. S. Kolyada, Verkhnie otsenki dliny proveryayuschikh testov dlya skhem iz funktsionalnykh elementov, dis. ... kand. fiz. mat. nauk, M., 2013, 77 pp.

[11] D. S. Romanov, “Metod sinteza legkotestiruemykh skhem, dopuskayuschikh edinichnye proveryayuschie testy konstantnoi dliny”, Diskretnaya matematika, 26:2 (2014), 100–130 | Zbl

[12] K. A. Popkov, “Korotkie edinichnye testy dlya skhem pri proizvolnykh konstantnykh neispravnostyakh na vykhodakh elementov”, Diskretnaya matematika, 30:3 (2018), 99–116 | MR

[13] S. V. Kovatsenko, “Sintez legkotestiruemykh skhem v bazise Zhegalkina dlya inversnykh neispravnostei”, Vestnik Moskovskogo universiteta. Ser. 15. Vychislitelnaya matematika i kibernetika, 2000, no. 2, 45–47 | Zbl

[14] N. P. Redkin, “O edinichnykh proveryayuschikh testakh skhem pri inversnykh neispravnostyakh elementov”, XII Mezhdunar. konf. po problemam teoreticheskoi kibernetiki, Tez. dokl. (N. Novgorod, 1999), Izd-vo mekhaniko-matematicheskogo fakulteta MGU, M., 1999, 196

[15] N. P. Redkin, “Edinichnye proveryayuschie testy dlya skhem pri inversnykh neispravnostyakh elementov”, Matematicheskie voprosy kibernetiki, 12, Fizmatlit, M., 2003, 217–230

[16] K. A. Popkov, “Sintez legkotestiruemykh skhem pri odnotipnykh konstantnykh neispravnostyakh na vkhodakh i vykhodakh elementov”, Intellektualnye sistemy. Teoriya i prilozheniya, 23:3 (2018), 131–147

[17] D. S. Romanov, E. Yu. Romanova, “Korotkie testy dlya skhem v bazise Zhegalkina”, Intellektualnye sistemy. Teoriya i prilozheniya, 20:3 (2016), 73–78 | MR

[18] D. S. Romanov, E. Yu. Romanova, “Metod sinteza neizbytochnykh skhem, dopuskayuschikh edinichnye proveryayuschie testy konstantnoi dliny”, Diskretnaya matematika, 29:4 (2017), 87–105

[19] K. A. Popkov, “Sintez legkotestiruemykh skhem pri proizvolnykh konstantnykh neispravnostyakh na vkhodakh i vykhodakh elementov”, Prikladnaya diskretnaya matematika, 2019, no. 43, 78–100 | Zbl

[20] K. A. Popkov, “Metod postroeniya legko diagnostiruemykh skhem iz funktsionalnykh elementov otnositelno edinichnykh neispravnostei”, Prikladnaya diskretnaya matematika, 2019, no. 46, 38–57 | Zbl

[21] Popkov K. A., “O skhemakh, dopuskayuschikh korotkie edinichnye proveryayuschie testy pri proizvolnykh neispravnostyakh funktsionalnykh elementov”, Prikladnaya diskretnaya matematika, 2021, no. 51, 85–100 | Zbl

[22] K. A. Popkov, “Korotkie polnye proveryayuschie testy dlya skhem iz dvukhvkhodovykh funktsionalnykh elementov”, Diskretnyi analiz i issledovanie operatsii, 26:1 (2019), 89–113 | Zbl