@article{PDM_2021_3_a7,
author = {A. N. Rybalov},
title = {The general complexity of the problem {to~recognize~Hamiltonian} paths},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {120--126},
year = {2021},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2021_3_a7/}
}
A. N. Rybalov. The general complexity of the problem to recognize Hamiltonian paths. Prikladnaâ diskretnaâ matematika, no. 3 (2021), pp. 120-126. http://geodesic.mathdoc.fr/item/PDM_2021_3_a7/
[1] Karp R., “Reducibility among combinatorial problems”, Complexity of Computer Computations, The IBM Research Symposia Ser., eds. R. E. Miller, J. W. Thather, 1972, 85–103 | Zbl
[2] Impagliazzo R., Wigderson A., “P $=$ BPP unless E has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC, ACM, El Paso, 1997, 220–229
[3] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | Zbl
[4] Gimadi E.H., Glebov N.I., Perepelitsa V.A., “Algorithms with bounds for problems of discrete optimization”, Problemy Kibernetiki, 31 (1975), 35–42 (in Russian)
[5] Rybalov A., “On generic complexity of the validity problem for Boolean formulas”, Prikladnaya Diskretnaya Matematika, 2016, no. 2(32), 119–126 (in Russian) | Zbl
[6] Perepelitsa V.A., “On two problems from graph theory”, Doklady AN SSSR, 194:6 (1970), 1269–1272 (in Russian)
[7] Posa L., “Hamiltonian circuits in random graphs”, Discrete Math., 14 (1976), 359–364 | DOI | Zbl