Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2021_1_a6, author = {A. N. Rybalov}, title = {On generic complexity of the isomorphism problem for finite semigroups}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {120--128}, publisher = {mathdoc}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2021_1_a6/} }
A. N. Rybalov. On generic complexity of the isomorphism problem for finite semigroups. Prikladnaâ diskretnaâ matematika, no. 1 (2021), pp. 120-128. http://geodesic.mathdoc.fr/item/PDM_2021_1_a6/
[1] Zemlyachenko V. N., Korneenko N. M., Tyshkevich R. I., “The graph isomorphism problem”, Zapiski Nauchnyh Seminarov LOMI, 118, 1982, 83–158 (in Russian) | MR | Zbl
[2] I. Kapovich, A. Miasnikov, P. Schupp, V. Shpilrain, “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[3] L. Babai, P. Erdos, S. Selkow, “Random graph isomorphism”, SIAM J. Computing, 9:3 (1980), 628–635 | DOI | MR | Zbl
[4] B. Bollobas, “Distinguishing of vertices of random graphs”, Ann. Discrete Math., 13 (1982), 33–50 | MR
[5] D. J. Kleitman, B. R. Rothschild, J. H. Spencer, “The number of semigroups of order $n$”, Proc. Amer. Math. Soc., 55:1 (1976), 227–232 | MR | Zbl