Pyramid scheme for constructing biorthogonal wavelet codes over finite fields
Prikladnaâ diskretnaâ matematika, no. 1 (2021), pp. 101-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of a biorthogonal decomposition of the space $V$ of dimension $n$ over the field $\mathrm{GF}(q)$ is constructively proved, namely, two representations of it are obtained as direct sums of subspaces $V =W_0 \oplus W_1 \oplus \ldots \oplus W_J \oplus V_J$ and $V = \tilde{W}_0 \oplus \tilde{W}_1 \oplus \ldots \oplus \tilde {W}_J \oplus \tilde{V}_J $, such that at the $j$-th level of the decomposition, for $0 j\leq J$, $V_{j-1}=V_j\oplus W_j$, $\tilde{V}_{j-1}= \tilde{V}_j\oplus \tilde{W}_j$, the subspace $V_j$ is orthogonal to $\tilde{W}_j $, and the subspace $W_j$ is orthogonal to $\tilde{V}_j $. The partition of the space at the $j$-th level is made with the help of pairs of level filters $(h^j, g^j)$ and $ (\tilde{h}^ j, \tilde{g}^j)$, for the construction of which the corresponding algorithms have been developed and theoretically proved. A new family of biorthogonal wavelet codes is built on the basis of the multilevel wavelet decomposition scheme with coding rate $2^{-L}$, where $L$ is the number of used decomposition levels, and examples of such codes are given.
Keywords: discrete biorthogonal wavelet transforms, multiresolutions
Mots-clés : wavelet codes.
@article{PDM_2021_1_a5,
     author = {D. V. Litichevskiy},
     title = {Pyramid scheme for constructing biorthogonal wavelet codes over finite fields},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {101--119},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2021_1_a5/}
}
TY  - JOUR
AU  - D. V. Litichevskiy
TI  - Pyramid scheme for constructing biorthogonal wavelet codes over finite fields
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2021
SP  - 101
EP  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2021_1_a5/
LA  - ru
ID  - PDM_2021_1_a5
ER  - 
%0 Journal Article
%A D. V. Litichevskiy
%T Pyramid scheme for constructing biorthogonal wavelet codes over finite fields
%J Prikladnaâ diskretnaâ matematika
%D 2021
%P 101-119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2021_1_a5/
%G ru
%F PDM_2021_1_a5
D. V. Litichevskiy. Pyramid scheme for constructing biorthogonal wavelet codes over finite fields. Prikladnaâ diskretnaâ matematika, no. 1 (2021), pp. 101-119. http://geodesic.mathdoc.fr/item/PDM_2021_1_a5/

[1] S. Mallat, Wavelet Tour of Signal Processing, 2nd ed., Academic Press, Boston, 1999, 799 pp. | MR | Zbl

[2] V. I. Vorobyov, V. G. Gribunin, Theory and Practice of Wavelet Transform, VUS Publ., S.-Petersburg, 1999, 206 pp. (in Russian)

[3] G. Caire, R. L. Grossman, H. V. Poor, “Wavelet transforms associated with finite cyclic groups”, IEEE Trans. Inform. Theory, 39:4 (1993), 1157–1166 | DOI | MR | Zbl

[4] F. Fekri, R. M. Mersereau, R. W. Schafer, “Theory of wavelet transform over finite fields”, Proc. IEEE Intern. Conf. Acoustics, Speech, and Signal Processing, v. 3, 1999, 1213–1216

[5] F. Fekri, S. W. McLaughlin, R. M. Mersereau, R. W. Schafer, “Double circulant self-dual codes using finite-field wavelet transforms”, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 1999, 355–363, Springer, Berlin | DOI | MR

[6] F. Fekri, S. W. McLaughlin, R. M. Mersereau, R. W. Schafer, Error control coding using finite-field wavelet transforms, Center for Signal Image Processing, Atlanta, 1999, 13 pp.

[7] F. Fekri, R. M. Mersereau, R. W. Schafer, “Theory of paraunitary filter banks over fields of characteristic two”, IEEE Trans. Inform. Theory, 48:11 (2002), 2964–2979 | DOI | MR | Zbl

[8] D. V. Chernikov, “Error-correcting codes using biorthogonal perfect reconstruction filter banks”, Proc. Conf. “Information Technologies and Systems” (Svetlogorsk, 2013), 507–512 (in Russian)

[9] F. G. MacWilliams, N. J. A. Sloane, The Theory of Error Correcting Codes, North-Holland, 1977, 796 pp. | MR | Zbl

[10] D. V. Chernikov, “Error-correcting codes using biorthogonal filter banks”, Siberian Electronic Math. Rep., 12 (2015), 704–713 (in Russian) | Zbl

[11] A. A. Soloviev, D. V. Chernikov, “Biorthogonal wavelet codes with prescribed code distance”, Discrete Math. Appl., 28:3 (2018), 179–188 | DOI | MR | Zbl

[12] A. A. Soloviev, D. V. Chernikov, “Biorthogonal wavelet codes in the fields of characteristic two”, Chelyabinsk Physics Math. J., 2:1 (2017), 66–79 (in Russian) | MR

[13] I. Doubechies, W. Sweldens, “Factoring wavelet transforms into lifting steps”, J. Fourier Analysis Appl., 4:3 (1998), 247–269 | DOI | MR