Metrical properties of the set of bent functions in view of duality
Prikladnaâ diskretnaâ matematika, no. 3 (2020), pp. 18-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we give a review of metrical properties of the entire set of bent functions and its significant subclasses of self-dual and anti-self-dual bent functions. We present results for iterative construction of bent functions in $n+2$ variables based on the concatenation of four bent functions and consider related open problem proposed by one of the authors. Criterion of self-duality of such functions is discussed. It is explored that the pair of sets of bent functions and affine functions as well as a pair of sets of self-dual and anti-self-dual bent functions in $n\geqslant 4$ variables is a pair of mutually maximally distant sets that implies metrical duality. Groups of automorphisms of the sets of bent functions and (anti-)self-dual bent functions are discussed. The solution to the problem of preserving bentness and the Hamming distance between bent function and its dual within automorphisms of the set of all Boolean functions in $n$ variables is considered.
Keywords: Boolean bent function, self-dual bent function, Hamming distance, metrical regularity, iterative construction.
Mots-clés : automorphism group
@article{PDM_2020_3_a1,
     author = {A. V. Kutsenko and N. N. Tokareva},
     title = {Metrical properties of the set of bent functions in view of duality},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {18--34},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2020_3_a1/}
}
TY  - JOUR
AU  - A. V. Kutsenko
AU  - N. N. Tokareva
TI  - Metrical properties of the set of bent functions in view of duality
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2020
SP  - 18
EP  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2020_3_a1/
LA  - en
ID  - PDM_2020_3_a1
ER  - 
%0 Journal Article
%A A. V. Kutsenko
%A N. N. Tokareva
%T Metrical properties of the set of bent functions in view of duality
%J Prikladnaâ diskretnaâ matematika
%D 2020
%P 18-34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2020_3_a1/
%G en
%F PDM_2020_3_a1
A. V. Kutsenko; N. N. Tokareva. Metrical properties of the set of bent functions in view of duality. Prikladnaâ diskretnaâ matematika, no. 3 (2020), pp. 18-34. http://geodesic.mathdoc.fr/item/PDM_2020_3_a1/

[1] Rothaus O. S., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Tokareva N., Bent Functions: Results and Applications to Cryptography, Acad. Press, Elsevier, 2015, 230 pp. | MR | Zbl

[3] Carlet C., Mesnager S., “Four decades of research on bent functions”, Des. Codes Cryptogr., 78:1 (2016), 5–50 | DOI | MR | Zbl

[4] Mesnager S., Bent Functions: Fundamentals and Results, Springer, Berlin, 2016, 544 pp. | MR | Zbl

[5] Kolomeec N., “The graph of minimal distances of bent functions and its properties”, Des. Codes Cryptogr., 85:3 (2017), 1–16 | DOI | MR

[6] Janusz G. J., “Parametrization of self-dual codes by orthogonal matrices”, Finite Fields Appl., 13:3 (2007), 450–491 | DOI | MR | Zbl

[7] Dillon J., Elementary Hadamard Difference Sets, PhD. dissertation, Univ. Maryland, College Park, 1974 | MR

[8] Carlet C., “Boolean functions for cryptography and error correcting codes”, Boolean Models and Methods in Mathematics, Computer Science, and Engineering, eds. Y. Crama, P. L. Hammer, Cambridge University Press, Cambridge, 2010, 257–397 | DOI | MR | Zbl

[9] Hou X.-D., “New constructions of bent functions”, J. Combin. Inform. System Sci., 25:1–4, Proc. Intern. Conf. Combinatorics, Inform. Theory and Statistics (2000), 173–189 | MR | Zbl

[10] Cusick T. W., Stănică P., Cryptographic Boolean Functions and Applications, Acad. Press, London, 2017, 288 pp. | MR | Zbl

[11] Tokareva N. N., “On the number of bent functions from iterative constructions: lower bounds”, Adv. Math. Commun., 5:4 (2011), 609–621 | DOI | MR | Zbl

[12] Tokareva N. N., “On decomposition of a Boolean function into sum of bent functions”, Siberian Electronic Math. Reports, 11 (2014), 745–751 | MR | Zbl

[13] Tokareva N. N., “On decomposition of a dual bent function into sum of two bent functions”, Prikladnaya Diskretnaya Matematika, 2014, no. 4(26), 59–61 (in Russian) | DOI | MR

[14] Kutsenko A., “The group of automorphisms of the set of self-dual bent functions”, Cryptogr. Commun., 12:5 (2020), 881–898 | DOI | MR

[15] Hou X.-D., “Classification of self dual quadratic bent functions”, Des. Codes Cryptogr., 63:2 (2012), 183–198 | DOI | MR | Zbl

[16] Carlet C., Danielson L. E., Parker M. G., Solé P., “Self-dual bent functions”, Int. J. Inform. Coding Theory, 1 (2010), 384–399 | DOI | MR | Zbl

[17] Feulner T., Sok L., Solé P., Wassermann A., “Towards the classification of self-dual bent functions in eight variables”, Des. Codes Cryptogr., 68:1 (2013), 395–406 | DOI | MR | Zbl

[18] Hyun J. Y., Lee H., Lee Y., “MacWilliams duality and Gleason-type theorem on self-dual bent functions”, Des. Codes Cryptogr., 63:3 (2012), 295–304 | DOI | MR | Zbl

[19] Mesnager S., “Several new infinite families of bent functions and their duals”, IEEE Trans. Inf. Theory, 60:7 (2014), 4397–4407 | DOI | MR | Zbl

[20] Rifà J., Zinoviev V. A., On binary quadratic symmetric bent and almost bent functions, 2019, arXiv: 1211.5257v3

[21] Mesnager S., “On constructions of bent functions from involutions”, Proc. ISIT, 2016, 110–114 | MR

[22] Coulter R., Mesnager S., “Bent functions from involutions over $\mathbb{F}_{2^n}$”, IEEE Trans. Inf. Theory, 64:4 (2018), 2979–2986 | DOI | MR | Zbl

[23] Luo G., Cao X., Mesnager S., “Several new classes of self-dual bent functions derived from involutions”, Cryptogr. Commun., 11:6 (2019), 1261–1273 | DOI | MR | Zbl

[24] Sok L., Shi M., Solé. P., “Classification and construction of quaternary self-dual bent functions”, Cryptogr. Commun., 10:2 (2018), 277–289 | DOI | MR | Zbl

[25] Kutsenko A., “Metrical properties of self-dual bent functions”, Des. Codes Cryptogr., 88:1 (2020), 201–222 | DOI | MR | Zbl

[26] Kutsenko A. V., “The Hamming distance spectrum between self-dual Maiorana-McFarland bent functions”, J. Appl. Industr. Math., 12:1 (2018), 112–125 | DOI | MR | Zbl

[27] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory. Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl

[28] MacWilliams F. J., Sloane N. J. A., The Theory of Error-Correcting Codes, North-Holland, Amsterdam–New York–Oxford, 1983, 782 pp. | MR

[29] Canteaut A., Charpin P., “Decomposing bent functions”, IEEE Trans. Inform. Theory, 49:8 (2003), 2004–2019 | DOI | MR | Zbl

[30] Preneel B., Van Leekwijck W., Van Linden L., et al., “Propagation characteristics of Boolean functions”, Advances in Cryptology-EUROCRYPT, LNCS, 473, 1990, 161–173 | MR

[31] Climent J.-J., Garcia F. J., and Requena V., “A construction of bent functions of $n+2$ variables from a bent function of $n$ variables and its cyclic shifts”, Algebra, 2014 (2017), 701298, 11 pp. | MR

[32] Canteaut A., Daum M., Dobertin H., Leander G., “Finding nonnormal bent functions”, Discrete Appl. Math., 154:2 (2006), 202–218 | DOI | MR | Zbl

[33] Stănică P., Sasao T., Butler J. T., “Distance duality on some classes of Boolean functions”, J. Combin. Math. Combin. Computing, 107 (2018), 181–198 | MR

[34] Oblaukhov A., “A lower bound on the size of the largest metrically regular subset of the Boolean cube”, Cryptogr. Commun., 11:4 (2019), 777–791 | DOI | MR | Zbl

[35] Tokareva N., “Duality between bent functions and affine functions”, Discrete Math., 312:3 (2012), 666–670 | DOI | MR | Zbl

[36] Markov A. A., “On transformations without error propagation”, Selected Works, v. II, Theory of Algorithms and Constructive Mathematics. Mathematical Logic. Informatics and Related Topics, MTsNMO Publ., M., 2003, 70–93 (in Russian) | MR

[37] Dempwolff U., “Automorphisms and equivalence of bent functions and of difference sets in elementary Abelian 2-groups”, Commun. Algebra, 34:3 (2006), 1077–1131 | DOI | MR | Zbl

[38] Tokareva N. N., “The group of automorphisms of the set of bent functions”, Discrete Math. Appl., 20:5–6 (2010), 655–664 | MR | Zbl

[39] Danielsen L. E., Parker M. G., Solé P., “The Rayleigh quotient of bent functions”, LNCS, 5921, 2009, 418–432 | MR | Zbl