Characterizations of non associative ordered semigroups by the properties of their fuzzy ideals with thresholds $(\alpha,\beta]$
Prikladnaâ diskretnaâ matematika, no. 1 (2019), pp. 37-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give the characterizations of regular (intra-regular, both regular and intra-regular) ordered AG-groupoids by the properties of fuzzy (left, right, quasi-, bi-, generalized bi-) ideals with thresholds $(\alpha ,\beta ]$.
Keywords: fuzzy left (right, interior, generalized bi-) ideals with thresholds $(\alpha ,\beta ]$, regular (intra-regular) ordered AG-groupoids.
Mots-clés : quasi-, bi-
@article{PDM_2019_1_a2,
     author = {K. Nasreen},
     title = {Characterizations of non associative ordered semigroups by the properties of their fuzzy ideals with thresholds $(\alpha,\beta]$},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {37--59},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2019_1_a2/}
}
TY  - JOUR
AU  - K. Nasreen
TI  - Characterizations of non associative ordered semigroups by the properties of their fuzzy ideals with thresholds $(\alpha,\beta]$
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2019
SP  - 37
EP  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2019_1_a2/
LA  - en
ID  - PDM_2019_1_a2
ER  - 
%0 Journal Article
%A K. Nasreen
%T Characterizations of non associative ordered semigroups by the properties of their fuzzy ideals with thresholds $(\alpha,\beta]$
%J Prikladnaâ diskretnaâ matematika
%D 2019
%P 37-59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2019_1_a2/
%G en
%F PDM_2019_1_a2
K. Nasreen. Characterizations of non associative ordered semigroups by the properties of their fuzzy ideals with thresholds $(\alpha,\beta]$. Prikladnaâ diskretnaâ matematika, no. 1 (2019), pp. 37-59. http://geodesic.mathdoc.fr/item/PDM_2019_1_a2/

[1] Kazim M. A., Naseeruddin M., “On almost semigroups”, Alig. Bull. Math., 1972, no. 2, 1–7 | MR | Zbl

[2] Protic P. V., Stevanovic N., “AG-test and some general properties of Abel-Grassmann's groupoids”, Pure Math. Appl., 1995, no. 6, 371–383 | MR | Zbl

[3] Mushtaq Q., Yusuf S. M., “On LA-semigroups”, Alig. Bull. Math., 1978, no. 8, 65–70 | MR | Zbl

[4] Jezek J., Kepka T., “Medial Groupoids”, Rozpravy CSAV Rada Mat. a Prir. Ved., 1983, no. 93/2, 93 pp. | MR

[5] Cho J. R., Jezek J., Kepka T., “Paramedial groupoids”, Czechoslovak Math. J., 49 (1999), 277–290 | DOI | MR | Zbl

[6] Kehayopulu N., “On left regular ordered semigroups”, Math Japon., 35 (1990), 1057–1060 | MR | Zbl

[7] Kehayopulu N., “On completely regular ordered semigroups”, Sci. Math., 1998, no. 1, 27–32 | MR | Zbl

[8] Kehayopulu N., “On intra-regular ordered semigroups”, Semigroup Forum, 46 (1993), 271–278 | DOI | MR | Zbl

[9] Zadeh L. A., “Fuzzy sets”, Inform. and Control, 1965, no. 8, 338–353 | DOI | MR | Zbl

[10] Rosenfeld A., “Fuzzy groups”, J. Math. Anal. Appl., 35 (1971), 512–517 | DOI | MR | Zbl

[11] Kuroki N., “Fuzzy bi-ideals in semigroups”, Comment. Math. Univ. St. Pauli, 28 (1979), 17–21 | MR | Zbl

[12] Kuroki N., “On fuzzy semigroups”, Inform. Sci., 53 (1991), 203–236 | DOI | MR | Zbl

[13] Mordeson J. N., Malik D. S., Kuroki N., Fuzzy Semigroups, Springer, Berlin, 2003 | MR | Zbl

[14] Kehayopulu N., Tsingelis M., “Fuzzy sets in ordered groupoids”, Semigroup Forum, 65 (2002), 128–132 | DOI | MR | Zbl

[15] Kehayopulu N., Tsingelis M., “Fuzzy bi-ideals in ordered semigroups”, Inform. Sci., 171 (2005), 13–28 | DOI | MR | Zbl