ElGamal cryptosystems on Boolean functions
Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 57-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here is a description of ElGamal public-key encryption and digital signature schemes constructed on the base of bijective systems of Boolean functions. The description is illustrated with a simple example in which the used Boolean functions are written in logical notation. In our encryption and signature schemes on Boolean functions, every one ciphertext or message signature is a pair of values, as in the basic ElGamal cryptosystem on a group. In our case, these values are Boolean vectors. Each vector in the pair depends on the value of a function on a plaintext or on a message, and this function is typically obtained from a given bijective vector Boolean function $g$ by applying some random and secret negation and permutation operations on the sets of variables and coordinate functions of $g$. For the pair of vectors in the ciphertext or in the message signature, the decryption algorithm produces the plaintext, and the signature verification algorithm accepts the signature, performing some computation on this pair. The signature is accepted for a message if and only if the computation results in this message. All the computations in the processes of encryption, decryption, signing and verification are logical and performed for Boolean values, promising their implementation efficiency to be more high than in the basic ElGamal schemes on groups.
Keywords: bijective vector Boolean functions, permutation and negation operations, ElGamal encryption
Mots-clés : ElGamal signature.
@article{PDM_2018_4_a4,
     author = {G. P. Agibalov},
     title = {ElGamal cryptosystems on {Boolean} functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {57--65},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2018_4_a4/}
}
TY  - JOUR
AU  - G. P. Agibalov
TI  - ElGamal cryptosystems on Boolean functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2018
SP  - 57
EP  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2018_4_a4/
LA  - en
ID  - PDM_2018_4_a4
ER  - 
%0 Journal Article
%A G. P. Agibalov
%T ElGamal cryptosystems on Boolean functions
%J Prikladnaâ diskretnaâ matematika
%D 2018
%P 57-65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2018_4_a4/
%G en
%F PDM_2018_4_a4
G. P. Agibalov. ElGamal cryptosystems on Boolean functions. Prikladnaâ diskretnaâ matematika, no. 4 (2018), pp. 57-65. http://geodesic.mathdoc.fr/item/PDM_2018_4_a4/

[1] Menezes A., van Oorshot P., Vanstone S., Handbook of Applied Cryptography, CRC Press Inc., 1997, 661 pp. | MR | Zbl

[2] Agibalov G. P., “Substitution block ciphers with functional keys”, Prikladnaya Diskretnaya Matematika, 2017, no. 38, 57–65 | DOI | MR

[3] Agibalov G. P., Pankratova I. A., “Asymmetric cryptosystems on Boolean functions”, Prikladnaya Diskretnaya Matematika, 2018, no. 40, 23–33 | DOI | MR

[4] Stinson D. R., Cryptography: Theory and Practice, CRC Press Inc., 1995, 434 pp. | MR | Zbl