A characterization of matroids in terms of surfaces
Prikladnaâ diskretnaâ matematika, no. 3 (2016), pp. 5-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the matroids of finite rank and finite-dimensional combinatorial geometries are studied. A definition of a matroid in terms of different rank surfaces satisfying some incidence axioms is proposed. This definition is equivalent to the definition of a matroid in terms of independent sets. In case of a simple matroid its characterization can be viewed as an equivalent definition of a combinatorial geometry.
Keywords: matroid, rank, combinatorial geometry.
Mots-clés : surface
@article{PDM_2016_3_a0,
     author = {A. V. Il'ev and V. P. Il'ev},
     title = {A characterization of matroids in terms of surfaces},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--15},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_3_a0/}
}
TY  - JOUR
AU  - A. V. Il'ev
AU  - V. P. Il'ev
TI  - A characterization of matroids in terms of surfaces
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 5
EP  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_3_a0/
LA  - ru
ID  - PDM_2016_3_a0
ER  - 
%0 Journal Article
%A A. V. Il'ev
%A V. P. Il'ev
%T A characterization of matroids in terms of surfaces
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 5-15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_3_a0/
%G ru
%F PDM_2016_3_a0
A. V. Il'ev; V. P. Il'ev. A characterization of matroids in terms of surfaces. Prikladnaâ diskretnaâ matematika, no. 3 (2016), pp. 5-15. http://geodesic.mathdoc.fr/item/PDM_2016_3_a0/

[1] Whitney H., “On the abstract properties of linear dependence”, Amer. J. Math., 57 (1935), 509–533 | DOI | MR | Zbl

[2] Brylawski T., “Appendix of matroid cryptomorphisms”, Theory of Matroids, Encyclopedia of Mathematics and its Applications, 26, ed. N. White, Cambridge University Press, Cambridge, 1986, 298–312 | MR

[3] Schrijver A., Combinatorial Optimization, v. B., Springer Verlag, Berlin–Heidelberg–N.Y., 2003, 1881 pp. | Zbl

[4] Welsh D. J. A., Matroid Theory, Academic Press, London–N.Y.–San Francisco, 1976, 433 pp. | MR | Zbl

[5] Aigner M., Combinatorial Theory, Springer Verlag, Berlin–Heidelberg–N.Y., 1979 | MR

[6] Rybnikov K. A., Introduction to Combinatorial Analysis, MSU Publ., Moscow, 1985 (in Russian) | MR

[7] Crapo H. H., Rota G.-C., On the Foundations of Combinatorial Theory, v. II, Combinatorial Geometries, MIT Press, Cambridge, MA, 1970, 293 pp. | MR

[8] Van Lint J. H., Wilson R. M., A Course in Combinatorics, Cambridge University Press, N.Y., 2001, 602 pp. | MR | Zbl

[9] Gordon G., McNulty J., Matroids: a Geometric Introduction, Cambridge University Press, Cambridge, 2012, 410 pp. | MR | Zbl

[10] Mason J. H., “Matroids as the study of geometrical configurations”, Higher Combinatorics, ed. M. Aigner, Reidel Publishing Company, Dordrecht, 1977, 133–176 | DOI | MR

[11] Bruhn H., Diestel R., Kriesell M., et al., “Axioms for infinite matroids”, Adv. Math., 239 (2013), 18–46 | DOI | MR | Zbl

[12] Delucchi E., Combinatorial Geometries in Algebra and Topology, Habilitationsschrift, Universität Bremen, 2011, 160 pp.

[13] Gelfand I. M., Goresky R. M., McPherson R. D.,Serganova V., “Combinatorial geometries, convex polyhedra and Schubert cells”, Adv. Math., 63 (1987), 301–316 | DOI | MR | Zbl

[14] Oxley J., Matroid Theory, Oxford University Press, N.Y., 1992, 532 pp. | MR | Zbl

[15] Pitsoulis L. S., Topics in Matroid Theory, Springer Verlag, N.Y., 2014, 127 pp. | MR | Zbl

[16] N. White (ed.), Theory of Matroids, Encyclopedia of Mathematics and its Applications, 26, Cambridge University Press, Cambridge, 1986, 316 pp. | MR | Zbl

[17] N. White (ed.), Combinatorial Geometries, Encyclopedia of Mathematics and its Applications, 29, Cambridge University Press, Cambridge, 1987, 212 pp. | MR | Zbl

[18] N. White (ed.), Matroid Applications, Encyclopedia of Mathematics and its Applications, 40, Cambridge University Press, Cambridge, 1992, 363 pp. | MR | Zbl

[19] Mac Lane S., “Some interpretations of abstract linear dependence in terms of projective geometry”, Amer. J. Math., 58 (1936), 236–240 | DOI | MR | Zbl