Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2016_2_a8, author = {A. N. Rybalov}, title = {On generic complexity of the validity problem for {Boolean} formulas}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {119--126}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2016_2_a8/} }
A. N. Rybalov. On generic complexity of the validity problem for Boolean formulas. Prikladnaâ diskretnaâ matematika, no. 2 (2016), pp. 119-126. http://geodesic.mathdoc.fr/item/PDM_2016_2_a8/
[1] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl
[2] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Average-case complexity for the word and membership problems in group theory”, Adv. Math., 190 (2005), 343–359 | DOI | MR | Zbl
[3] Hamkins J. D., Miasnikov A. G., “The halting problem is decidable on a set of asymptotic probability one”, Notre Dame J. Formal Logic, 47:4 (2006), 515–524 | DOI | MR | Zbl
[4] Gilman R., Miasnikov A. G., Myasnikov A. D., Ushakov A., “Report on generic case complexity”, Herald of Omsk University, 2007, Special Issue, 103–110
[5] Cook S. A., “The complexity of theorem proving procedures”, Proc. 3d Annual ACM Symposium on Theory of Computing, N.Y., USA, 1971, 151–158 | Zbl
[6] Impagliazzo R., Wigderson A., “P=BPP unless E has subexponential circuits: Derandomizing the XOR Lemma”, Proc. 29th STOC., ACM, El Paso, 1997, 220–229 | MR
[7] Myasnikov A., Rybalov A., “Generic complexity of undecidable problems”, J. Symbolic Logic, 73:2 (2008), 656–673 | DOI | MR | Zbl
[8] Rybalov A., “Generic complexity of presburger arithmetic”, Theory Comput. Systems, 46:1 (2010), 2–8 | DOI | MR | Zbl
[9] Knuth D. E., The Art of Computer Programming, Addison-Wesley, Reading, Massachusetts, 1997 | MR | Zbl