On linear decomposition of Boolean functions
Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 46-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Disjunctive decompositions of Boolean functions taken after a linear substitution on the set of arguments are considered. For any component of such a decomposition, a notion of a substantial variables subspace is introduced. The main topic of the article is to give some sufficient condition under which the both these subspaces unequally determine each other in a simple disjunctive decomposition of a function having the trivial stabiliser group of shifts. The case of iterative disjunctive decomposition is considered too.
Keywords: Boolean function, vector space, dual space, simple disjunctive decomposition, iterative disjunctive decomposition.
@article{PDM_2016_1_a3,
     author = {A. V. Cheremushkin},
     title = {On linear decomposition of {Boolean} functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {46--56},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2016_1_a3/}
}
TY  - JOUR
AU  - A. V. Cheremushkin
TI  - On linear decomposition of Boolean functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2016
SP  - 46
EP  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2016_1_a3/
LA  - ru
ID  - PDM_2016_1_a3
ER  - 
%0 Journal Article
%A A. V. Cheremushkin
%T On linear decomposition of Boolean functions
%J Prikladnaâ diskretnaâ matematika
%D 2016
%P 46-56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2016_1_a3/
%G ru
%F PDM_2016_1_a3
A. V. Cheremushkin. On linear decomposition of Boolean functions. Prikladnaâ diskretnaâ matematika, no. 1 (2016), pp. 46-56. http://geodesic.mathdoc.fr/item/PDM_2016_1_a3/

[1] Cheremushkin A. V., “Methods of affine and linear classification of binary functions”, Tr. Diskr. Mat., 4, 2001, 273–314 (in Russian)

[2] Cheremushkin A. V., “The uniqueness of the binary function decomposition in a unrepeated product of non-linear irreducible factors”, Lesnoy vestnik, 2004, no. 4(35), 86–90 (in Russian)