The nonlinearity index for a~piecewise-linear substitution of the additive group of the field~$\mathbb F_{2^n}$
Prikladnaâ diskretnaâ matematika, no. 4 (2015), pp. 32-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give a lower bound on the nonlinearity of permutations on a field $\mathbb F_{2^n}$ with restrictions to cosets of $H$ in $\mathbb F_{2^n}^*$, $H\mathbb F_{2^n}^*$, $|H|=l$, $l\cdot r=2^n-1$, being the maps $x\mapsto A_jx$, $A_j\in\mathbb F_{2^n}^*$, $j=0,\dots,r-1$. Nonlinearity spectra of this permutations are found in the cases $r=3,5$.
Keywords: piecewise-linear function, permutation of a finite field, nonlinearity.
@article{PDM_2015_4_a2,
     author = {A. E. Trishin},
     title = {The nonlinearity index for a~piecewise-linear substitution of the additive group of the field~$\mathbb F_{2^n}$},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {32--42},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_4_a2/}
}
TY  - JOUR
AU  - A. E. Trishin
TI  - The nonlinearity index for a~piecewise-linear substitution of the additive group of the field~$\mathbb F_{2^n}$
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 32
EP  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_4_a2/
LA  - ru
ID  - PDM_2015_4_a2
ER  - 
%0 Journal Article
%A A. E. Trishin
%T The nonlinearity index for a~piecewise-linear substitution of the additive group of the field~$\mathbb F_{2^n}$
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 32-42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_4_a2/
%G ru
%F PDM_2015_4_a2
A. E. Trishin. The nonlinearity index for a~piecewise-linear substitution of the additive group of the field~$\mathbb F_{2^n}$. Prikladnaâ diskretnaâ matematika, no. 4 (2015), pp. 32-42. http://geodesic.mathdoc.fr/item/PDM_2015_4_a2/

[1] Logachev O. A., Sal'nikov A. A., Smyshlyaev S. V., Yashchenko V. V., Boolean Functions in Coding Theory and Cryptology, MCCME Publ., Moscow, 2012, 584 pp. (in Russian)

[2] Nyberg K., “On the construction of highly nonlinear permutations”, EUROCRYPT'92, LNCS, 658, 1993, 92–98 | MR | Zbl

[3] Lidl R., Niderrayter G., Finite Fields, v. 1, 2, Mir Publ., Moscow, 1988, 822 pp. (in Russian)

[4] Evans A. B., Orthomorphisms Graphs and Groups, Springer Verlag, Berlin, 1992 | MR

[5] Paige L. J., “Complete mappings of finite groups”, Pacific J. Math., 1 (1955), 111–116 | DOI | MR

[6] Gluhov M. M., “On a method of construction of orthogonal quasigroup systems by means of groups”, Mat. Vopr. Kriptogr., 2:4 (2011), 5–24 (in Russian)

[7] Ding C., “Cyclotomic linear codes of order 3”, IEEE Trans. Inf. Theory, 53:6 (2007), 2274–2277 | DOI | MR | Zbl

[8] McEliece R. J., “Irreducible cyclic codes and Gauss sums”, Combinatorics, eds. M. Hall, J. H. van Lint, Math. Centre, Amsterdam, 1975, 185–202 | DOI | MR