Problems, solutions and experience of the first international student's Olympiad in cryptography
Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 41-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

A detailed overview of the problems, solutions and experience of the first international student's Olympiad in cryptography, NSUCRYPTO'2014, is given. We start with the rules of participation and the description of rounds. All 15 mathematical problems of the Olympiad and their solutions are considered in detail. The problems are about differential characteristics of S-boxes, S-box masking, relations between cyclic rotation and additions modulo $2$ and $2^n$, special linear subspaces in $\mathbb F_2^n$, the number of solutions of the equation $F(x)+F(x+a)=b$ over the finite field $\mathbb F_{2^n}$ and APN functions. Some unsolved problems in symmetric cryptography are also considered.
Keywords: cryptography, block ciphers, Boolean functions, AES
Mots-clés : Olympiad, NSUCRYPTO.
@article{PDM_2015_3_a3,
     author = {S. Agievich and A. Gorodilova and N. Kolomee{\cyrs} and S. Nikova and B. Preneel and V. Rijmen and G. Shushuev and N. Tokareva and V. Vitkup},
     title = {Problems, solutions and experience of the first international student's {Olympiad} in cryptography},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {41--62},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_3_a3/}
}
TY  - JOUR
AU  - S. Agievich
AU  - A. Gorodilova
AU  - N. Kolomeeс
AU  - S. Nikova
AU  - B. Preneel
AU  - V. Rijmen
AU  - G. Shushuev
AU  - N. Tokareva
AU  - V. Vitkup
TI  - Problems, solutions and experience of the first international student's Olympiad in cryptography
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 41
EP  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_3_a3/
LA  - en
ID  - PDM_2015_3_a3
ER  - 
%0 Journal Article
%A S. Agievich
%A A. Gorodilova
%A N. Kolomeeс
%A S. Nikova
%A B. Preneel
%A V. Rijmen
%A G. Shushuev
%A N. Tokareva
%A V. Vitkup
%T Problems, solutions and experience of the first international student's Olympiad in cryptography
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 41-62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_3_a3/
%G en
%F PDM_2015_3_a3
S. Agievich; A. Gorodilova; N. Kolomeeс; S. Nikova; B. Preneel; V. Rijmen; G. Shushuev; N. Tokareva; V. Vitkup. Problems, solutions and experience of the first international student's Olympiad in cryptography. Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 41-62. http://geodesic.mathdoc.fr/item/PDM_2015_3_a3/

[1] Nyberg K., “Differentially uniform mappings for cryptography”, Eurocrypt'93, LNCS, 765, 1994, 55–64 | MR | Zbl

[2] Browning K. A., Dillon J. F., McQuistan M. T., Wolfe A. J., “An APN Permutation in Dimension Six”, Post-proceedings of the 9-th Intern. Conf. on Finite Fields and Their Applications Fq'09, Contemporary Math., 518, AMS, 2010, 33–42 | DOI | MR | Zbl

[3] Daemen J., Rijmen V., The Design of Rijndael: AES – The Advanced Encryption Standard, Springer, 2002, 238 pp. | MR | Zbl

[4] Qu L., Fu S., Dai Q., Li C., When a Boolean Function can be Expressed as the Sum of two Bent Functions, Cryptology ePrint Archive, 2014/048

[5] Zieschang T., “Combinatorial Properties of Basic Encryption Operations”, Eurocrypt'97, LNCS, 1233, 1997, 14–26

[6] Agibalov G. P., “Shifry s vodyanymi znakami [Watermarking Ciphers]”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 54–59 (in Russian)

[7] http://writeupsd.blogspot.ru/2014/11/apn-permutation-finder.html