On lower bounds for complexity over infinite basises for functions of multi-valued logic
Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 5-16

Voir la notice de l'article provenant de la source Math-Net.Ru

The complexity and the depth of multi-valued logic functions realization by formulas and by circuits of functional gates over infinite incomplete basises are estimated. Some examples of infinite basises allowing high (including overexponential) lower bounds for complexity are presented.
Keywords: functions of multi-valued logic, infinite basises, incomplete basises, overexponential complexity bounds, exponential depth bounds.
@article{PDM_2015_3_a0,
     author = {A. A. Andreev},
     title = {On lower bounds for complexity over infinite basises for functions of multi-valued logic},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--16},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_3_a0/}
}
TY  - JOUR
AU  - A. A. Andreev
TI  - On lower bounds for complexity over infinite basises for functions of multi-valued logic
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 5
EP  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_3_a0/
LA  - ru
ID  - PDM_2015_3_a0
ER  - 
%0 Journal Article
%A A. A. Andreev
%T On lower bounds for complexity over infinite basises for functions of multi-valued logic
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 5-16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_3_a0/
%G ru
%F PDM_2015_3_a0
A. A. Andreev. On lower bounds for complexity over infinite basises for functions of multi-valued logic. Prikladnaâ diskretnaâ matematika, no. 3 (2015), pp. 5-16. http://geodesic.mathdoc.fr/item/PDM_2015_3_a0/