On some classes of decomposable Markov chains on finite Abelian group
Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 78-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem for the decomposition of a given simple homogeneous Markov chain into the sum of the components of the chain is considered. The class of chains allowing this decomposition in the infinite number of ways is described.
Mots-clés : decomposition of a Markov chain
Keywords: the summation of Markov chains.
@article{PDM_2015_1_a7,
     author = {M. I. Rozhkov},
     title = {On some classes of decomposable {Markov} chains on finite {Abelian} group},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {78--83},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a7/}
}
TY  - JOUR
AU  - M. I. Rozhkov
TI  - On some classes of decomposable Markov chains on finite Abelian group
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 78
EP  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_1_a7/
LA  - ru
ID  - PDM_2015_1_a7
ER  - 
%0 Journal Article
%A M. I. Rozhkov
%T On some classes of decomposable Markov chains on finite Abelian group
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 78-83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_1_a7/
%G ru
%F PDM_2015_1_a7
M. I. Rozhkov. On some classes of decomposable Markov chains on finite Abelian group. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 78-83. http://geodesic.mathdoc.fr/item/PDM_2015_1_a7/

[1] Rozhkov M. I., “O summirovanii cepej Markova na konechnoj gruppe”, Trudy po Diskretnoi Matematike, 3, 2000, 195–214 (in Russian)

[2] Rozhkov M. I., “Summirovanie markovskih posledovatel'nostej na konechnoj abelevoj gruppe.”, Diskretnaya Matematika, 22:3 (2010), 44–62 (in Russian) | DOI | MR | Zbl

[3] Kemeni Dzh., Snell Dzh., Konechnye cepi Markova, Nauka Publ., Moscow, 1970 (in Russian)

[4] Kjertis Ch., Rajner I., Teorija predstavlenij konechnyh grupp i associativnyh algebr, Nauka Publ., Moscow, 1969, 688 pp. (in Russian) | MR

[5] Vorob'ev N. N., “Slozhenie nezavisimyh sluchajnyh velichin na konechnyh abelevyh gruppah”, Matematicheskii Sb., 34(76):1 (1954), 89–126 | MR | Zbl