Closed classes of three-valued logic functions generated by symmetric functions with a~bounded number of layers
Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 17-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Closed classes of three-valued logic functions of which a generating system consists of symmetric functions with values in the set $\{0,1\}$ and with value 1 at a bounded subset of layers from $\{1,2\}^n$ are considered. Some criteria for existence of a basis and of a finite basis are obtained for these classes. It is shown how the existence of a basis or of a finite basis depends on the existence of a basis or of a finite basis in subclasses generated by monotonous or non-monotonous functions.
Keywords: multi-valued logic functions, closed classes, generating systems.
@article{PDM_2015_1_a1,
     author = {A. V. Mikhailovich},
     title = {Closed classes of three-valued logic functions generated by symmetric functions with a~bounded number of layers},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {17--26},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2015_1_a1/}
}
TY  - JOUR
AU  - A. V. Mikhailovich
TI  - Closed classes of three-valued logic functions generated by symmetric functions with a~bounded number of layers
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2015
SP  - 17
EP  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2015_1_a1/
LA  - ru
ID  - PDM_2015_1_a1
ER  - 
%0 Journal Article
%A A. V. Mikhailovich
%T Closed classes of three-valued logic functions generated by symmetric functions with a~bounded number of layers
%J Prikladnaâ diskretnaâ matematika
%D 2015
%P 17-26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2015_1_a1/
%G ru
%F PDM_2015_1_a1
A. V. Mikhailovich. Closed classes of three-valued logic functions generated by symmetric functions with a~bounded number of layers. Prikladnaâ diskretnaâ matematika, no. 1 (2015), pp. 17-26. http://geodesic.mathdoc.fr/item/PDM_2015_1_a1/

[1] Post E. L., “Introduction to a general theory of elementary propositions”, Am. J. Math., 43:3 (1921), 163–185 | DOI | MR | Zbl

[2] Post E. L., The Two-Valued Iterative Systems of Mathematical Logic, Ann. Math. Studies, 5, Princeton Univ. Press, 1941, 122 pp. | MR | Zbl

[3] Janov Ju. I., Muchnik A. A., “O sushhestvovanii $k$-znachnyh zamknutyh klassov, ne imejushhih konechnogo bazisa”, DAN SSSR, 127:1 (1959), 44–46 (in Russian) | Zbl

[4] Mikhailovich A. V., “O zamknutyh klassah trehznachnoj logiki, porozhdennyh simmetricheskimi funkcijami”, Vestn. Mosk. un-ta. Matem. Mehan., 2008, no. 4, 54–57 (in Russian) | MR | Zbl

[5] Mikhailovich A. V., “O klassah funkcij trehznachnoj logiki, porozhdennyh monotonnymi simmetricheskimi funkcijami”, Vestn. Mosk. un-ta. Matem. Mehan., 2009, no. 1, 33–37 (in Russian) | MR | Zbl

[6] Mikhailovich A. V., “O zamknutyh klassah funkcij mnogoznachnoj logiki, porozhdennyh simmetricheskimi funkcijami”, Matematicheskie voprosy kibernetiki, 18, Fizmatlit Publ., Moscow, 2013, 123–212 (in Russian)

[7] Mikhailovich A. V., “O baziruemosti zamknutyh klassov funkcij trehznachnoj logiki, porozhdennyh simmetricheskimi funkcijami s ogranichennym chislom sloev”, Materialy IX molodezhnoj nauch. shkoly po diskretnoj matematike i ejo prilozhenijam (Moscow, 16–21 september, 2013), IPM RAN Publ., Moscow, 2013, 80–85 (in Russian)

[8] Jablonskij S. V., Vvedenie v diskretnuju matematiku, Vysshaja Shkola Publ., Moscow, 2001, 384 pp. (in Russian) | MR

[9] Mikhailovich A. V., “O zamknutyh klassah trehznachnoj logiki, porozhdennyh sistemami, soderzhashhimi simmetricheskie funkcii”, Vestn. Mosk. un-ta. Matem. Mehan., 2012, no. 1, 58–62 (in Russian) | MR | Zbl

[10] Mikhailovich A. V., “O svojstvah zamknutyh klassov funkcij trehznachnoj logiki, porozhdennyh simmetricheskimi funkcijami”, Materialy X Mezhdunar. seminara “Diskretnaja matematika i ee prilozhenija” (Moscow, 1–6 february, 2010), DMM MSU Publ., Moscow, 2010, 193–196 (in Russian)