On the covering radius of the linear codes generated by the affine geometries over~$\mathrm{GF}(4)$
Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 72-77
Voir la notice de l'article provenant de la source Math-Net.Ru
The covering radius for a code is defined to be a maximal distance between a space vector and the code. It is shown that the covering radius for a linear code generated by the affine geometry over $\mathrm{GF}(4)$ equals 4.
Keywords:
linear codes, finite affine geometries, covering radius.
@article{PDM_2014_4_a7,
author = {M. E. Kovalenko},
title = {On the covering radius of the linear codes generated by the affine geometries over~$\mathrm{GF}(4)$},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {72--77},
publisher = {mathdoc},
number = {4},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2014_4_a7/}
}
TY - JOUR
AU - M. E. Kovalenko
TI - On the covering radius of the linear codes generated by the affine geometries over~$\mathrm{GF}(4)$
JO - Prikladnaâ diskretnaâ matematika
PY - 2014
SP - 72
EP - 77
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/PDM_2014_4_a7/
LA - ru
ID - PDM_2014_4_a7
ER -
M. E. Kovalenko. On the covering radius of the linear codes generated by the affine geometries over~$\mathrm{GF}(4)$. Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 72-77. http://geodesic.mathdoc.fr/item/PDM_2014_4_a7/