On decomposition of a~dual bent function into sum of two bent functions
Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 59-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proven that a bent function is decomposable into the sum of two bent functions if and only if the same is true for its dual bent function.
Keywords: bent function, dual function.
@article{PDM_2014_4_a5,
     author = {N. N. Tokareva},
     title = {On decomposition of a~dual bent function into sum of two bent functions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {59--61},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_4_a5/}
}
TY  - JOUR
AU  - N. N. Tokareva
TI  - On decomposition of a~dual bent function into sum of two bent functions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 59
EP  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_4_a5/
LA  - ru
ID  - PDM_2014_4_a5
ER  - 
%0 Journal Article
%A N. N. Tokareva
%T On decomposition of a~dual bent function into sum of two bent functions
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 59-61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_4_a5/
%G ru
%F PDM_2014_4_a5
N. N. Tokareva. On decomposition of a~dual bent function into sum of two bent functions. Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 59-61. http://geodesic.mathdoc.fr/item/PDM_2014_4_a5/

[1] Rothaus O., “On bent functions”, J. Combin. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Tokareva N. N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Adv. Math. Comm., 5:4 (2011), 609–621 | DOI | MR | Zbl

[3] Tokareva N. N., “Every cubic Boolean function in 8 variables is the sum of not more than 4 bent functions”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 38–39

[4] Tokareva N. N., “O razlozhenii bulevoi funktsii v summu bent-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2012, no. 5, 30

[5] Qu L., Li C., When a Boolean function can be expressed as the sum of two bent functions, Cryptology ePrint Archive, 2014/048

[6] Kolomeets N. A., “Verkhnyaya otsenka chisla bent-funktsii na rasstoyanii $2^k$ ot proizvolnoi bent-funktsii ot $2k$ peremennykh”, Prikladnaya diskretnaya matematika, 2014, no. 3, 28–39

[7] Cusick T. W., Stănică P., Cryptographic Boolean Functions and Applications, Acad. Press, San Diego, 2009, 245 pp. | MR | Zbl

[8] Carlet C., Danielsen L.-E., Parker M. G., Solé P., “Self-dual bent functions”, Int. J. Inform. and Coding Theory, 1:4 (2010), 384–399 | DOI | MR | Zbl

[9] Langevin Ph., Leander G., “Monomial bent functions and Stickelberger's theorem”, Finite Fields and Their Applications, 14:3 (2008), 727–742 | DOI | MR | Zbl