Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2014_4_a5, author = {N. N. Tokareva}, title = {On decomposition of a~dual bent function into sum of two bent functions}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {59--61}, publisher = {mathdoc}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2014_4_a5/} }
N. N. Tokareva. On decomposition of a~dual bent function into sum of two bent functions. Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 59-61. http://geodesic.mathdoc.fr/item/PDM_2014_4_a5/
[1] Rothaus O., “On bent functions”, J. Combin. Theory Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[2] Tokareva N. N., “On the number of bent functions from iterative constructions: lower bounds and hypotheses”, Adv. Math. Comm., 5:4 (2011), 609–621 | DOI | MR | Zbl
[3] Tokareva N. N., “Every cubic Boolean function in 8 variables is the sum of not more than 4 bent functions”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 38–39
[4] Tokareva N. N., “O razlozhenii bulevoi funktsii v summu bent-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2012, no. 5, 30
[5] Qu L., Li C., When a Boolean function can be expressed as the sum of two bent functions, Cryptology ePrint Archive, 2014/048
[6] Kolomeets N. A., “Verkhnyaya otsenka chisla bent-funktsii na rasstoyanii $2^k$ ot proizvolnoi bent-funktsii ot $2k$ peremennykh”, Prikladnaya diskretnaya matematika, 2014, no. 3, 28–39
[7] Cusick T. W., Stănică P., Cryptographic Boolean Functions and Applications, Acad. Press, San Diego, 2009, 245 pp. | MR | Zbl
[8] Carlet C., Danielsen L.-E., Parker M. G., Solé P., “Self-dual bent functions”, Int. J. Inform. and Coding Theory, 1:4 (2010), 384–399 | DOI | MR | Zbl
[9] Langevin Ph., Leander G., “Monomial bent functions and Stickelberger's theorem”, Finite Fields and Their Applications, 14:3 (2008), 727–742 | DOI | MR | Zbl