Relationship between the coefficients of polynomials over $\mathrm{GF}(2^n)$ and weights of Boolean functions represented by them
Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 28-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boolean functions in $n$ variables are represented by polynomials over $\mathrm{GF}(2^n)$. The relationship between the coefficients of polynomials and the weights of functions are researched. Some formulas for expressing the dependence of the first and the second bits in the binary code of the function weight on the polynomial coefficients are obtained. For weights of bent functions and for their subfunctions, some expressions are also obtained.
Keywords: Boolean function, bent function, polynomial over a field, vector space, weight of function, subspaces.
@article{PDM_2014_4_a3,
     author = {A. S. Kuzmin and V. I. Nozdrunov},
     title = {Relationship between the coefficients of polynomials over $\mathrm{GF}(2^n)$ and weights of {Boolean} functions represented by them},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {28--46},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_4_a3/}
}
TY  - JOUR
AU  - A. S. Kuzmin
AU  - V. I. Nozdrunov
TI  - Relationship between the coefficients of polynomials over $\mathrm{GF}(2^n)$ and weights of Boolean functions represented by them
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 28
EP  - 46
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_4_a3/
LA  - ru
ID  - PDM_2014_4_a3
ER  - 
%0 Journal Article
%A A. S. Kuzmin
%A V. I. Nozdrunov
%T Relationship between the coefficients of polynomials over $\mathrm{GF}(2^n)$ and weights of Boolean functions represented by them
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 28-46
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_4_a3/
%G ru
%F PDM_2014_4_a3
A. S. Kuzmin; V. I. Nozdrunov. Relationship between the coefficients of polynomials over $\mathrm{GF}(2^n)$ and weights of Boolean functions represented by them. Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 28-46. http://geodesic.mathdoc.fr/item/PDM_2014_4_a3/

[1] Rothaus O. S., “On bent functions”, J. Combinatorial Theory A, 20 (1976), 300–305 | DOI | MR | Zbl

[2] Youssef A., Gong G., “Hyper-bent functions”, LNCS, 2045, 2001, 406–419 | MR | Zbl

[3] Logachev O. A., Salnikov A. A., Yaschenko V. V., “O svoistvakh summ Veilya na konechnykh polyakh i konechnykh abelevykh gruppakh”, Diskretnaya matematika, 11:2 (1999), 66–85 | DOI | MR | Zbl

[4] Mak-Vilyams F. Dzh., Sloen N. Dzh. A., Teoriya kodov, ispravlyayuschikh oshibki, Svyaz, M., 1979

[5] Rueppel R. A., Analysis and Design of Stream Ciphers, Springer, Berlin, 1986, 244 pp. | MR | Zbl

[6] Logachev O. A., Salnikov A. A., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, MTsNMO, M., 2004

[7] Kuzmin A. S., Markov V. T., Nechaev A. A., Shishkov A. B., “Priblizhenie bulevykh funktsii monomialnymi”, Diskretnaya matematika, 18:1 (2006), 9–29 | DOI | MR | Zbl