Discrete logarithm problem in finite dimensional algebras over field
Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 21-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The open key distribution procedure by Diffie–Hellmann algorithm over non associative groupoid is studied. It is proved that the discrete logarithm problem in finite dimensional algebras is polynomially equivalent to the discrete logarithm problem in finite fields.
Keywords: open key distribution, Diffie–Hellmann algorithm, finite dimensional algebras, discrete logarithm problem.
Mots-clés : non associative groupoids
@article{PDM_2014_4_a2,
     author = {S. Yu. Katyshev},
     title = {Discrete logarithm problem in finite dimensional algebras over field},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {21--27},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_4_a2/}
}
TY  - JOUR
AU  - S. Yu. Katyshev
TI  - Discrete logarithm problem in finite dimensional algebras over field
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 21
EP  - 27
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_4_a2/
LA  - ru
ID  - PDM_2014_4_a2
ER  - 
%0 Journal Article
%A S. Yu. Katyshev
%T Discrete logarithm problem in finite dimensional algebras over field
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 21-27
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_4_a2/
%G ru
%F PDM_2014_4_a2
S. Yu. Katyshev. Discrete logarithm problem in finite dimensional algebras over field. Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 21-27. http://geodesic.mathdoc.fr/item/PDM_2014_4_a2/

[1] Katyshev S. Yu., Markov V. T., Nechaev A. A., “Ispolzovanie neassotsiativnykh gruppoidov dlya otkrytogo raspredeleniya klyuchei”, Diskretnaya matematika, 26:3 (2014), 45–64 | DOI

[2] Diffie W., Hellman M. E., “New directories in cryptography”, IEEE Trans. Inf. Theory, 22 (1976), 644–654 | DOI | MR | Zbl

[3] Pirs R., Assotsiativnye algebry, Per. s angl., Mir, M., 1986, 543 pp. | MR

[4] Vasilenko O. N., Teoretiko-chislovye algoritmy v kriptografii, 2-e izd., MTsNMO, M., 2007, 326 pp. | MR

[5] Glukhov M. M., Elizarov V. P., Nechaev A. A., Algebra, V 2-kh t., Gelios, M., 2003, 336+416 pp.

[6] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci., 76:6 (1995), 2793–2915 | DOI | MR | Zbl