On generating sets of diagonal acts over semigroups of isotone and continuous transformations
Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 5-12

Voir la notice de l'article provenant de la source Math-Net.Ru

The diagonal acts (automata) over semigroups of isotone transformations of a partially ordered set and continuous mappings of a topological space into itself are investigated. For the diagonal right act over the semigroup of continuous selfmappings of a compact, a necessary condition to be cyclic is given. For the diagonal act over a semigroup of isotone selfmappings of the set of natural numbers, the absence of a countable set of generators is proved. The connections between the continuity and the isotonness are studied.
Keywords: act, isotone mapping, generating set, semigroup of continuous mappings.
Mots-clés : diagonal act
@article{PDM_2014_4_a0,
     author = {T. V. Apraksina},
     title = {On generating sets of diagonal acts over semigroups of isotone and continuous transformations},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--12},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_4_a0/}
}
TY  - JOUR
AU  - T. V. Apraksina
TI  - On generating sets of diagonal acts over semigroups of isotone and continuous transformations
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 5
EP  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_4_a0/
LA  - ru
ID  - PDM_2014_4_a0
ER  - 
%0 Journal Article
%A T. V. Apraksina
%T On generating sets of diagonal acts over semigroups of isotone and continuous transformations
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 5-12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_4_a0/
%G ru
%F PDM_2014_4_a0
T. V. Apraksina. On generating sets of diagonal acts over semigroups of isotone and continuous transformations. Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 5-12. http://geodesic.mathdoc.fr/item/PDM_2014_4_a0/