On generating sets of diagonal acts over semigroups of isotone and continuous transformations
Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 5-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The diagonal acts (automata) over semigroups of isotone transformations of a partially ordered set and continuous mappings of a topological space into itself are investigated. For the diagonal right act over the semigroup of continuous selfmappings of a compact, a necessary condition to be cyclic is given. For the diagonal act over a semigroup of isotone selfmappings of the set of natural numbers, the absence of a countable set of generators is proved. The connections between the continuity and the isotonness are studied.
Keywords: act, isotone mapping, generating set, semigroup of continuous mappings.
Mots-clés : diagonal act
@article{PDM_2014_4_a0,
     author = {T. V. Apraksina},
     title = {On generating sets of diagonal acts over semigroups of isotone and continuous transformations},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--12},
     publisher = {mathdoc},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_4_a0/}
}
TY  - JOUR
AU  - T. V. Apraksina
TI  - On generating sets of diagonal acts over semigroups of isotone and continuous transformations
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 5
EP  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_4_a0/
LA  - ru
ID  - PDM_2014_4_a0
ER  - 
%0 Journal Article
%A T. V. Apraksina
%T On generating sets of diagonal acts over semigroups of isotone and continuous transformations
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 5-12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_4_a0/
%G ru
%F PDM_2014_4_a0
T. V. Apraksina. On generating sets of diagonal acts over semigroups of isotone and continuous transformations. Prikladnaâ diskretnaâ matematika, no. 4 (2014), pp. 5-12. http://geodesic.mathdoc.fr/item/PDM_2014_4_a0/

[1] Yaroshevich V. A., “O svoistvakh polugrupp chastichnykh izotonnykh preobrazovanii kvaziuporyadochennykh mnozhestv”, Vestnik MGADA, 2011, no. 3(9), 139–144

[2] Stong R. E., “Finite topological spaces”, Trans. Amer. Math. Soc., 123 (1996), 325–340 | MR

[3] Magill K. D. (Jr.), “A survey of semigroups of continuous selfmaps”, Semigroup Forum, 11 (1975/1976), 189–282 | DOI | MR

[4] Thornton M. C., “Semigroups of isotone selfmaps on partially ordered sets”, J. London Math. Soc., 14:3 (1976), 545–553 | DOI | MR | Zbl

[5] Gluskin L. M., “Polugruppy izotonnykh preobrazovanii”, Uspekhi matem. nauk, 16:5(101) (1961), 157–162 | MR | Zbl

[6] Nurutdinov B. S., “Topologii prostranstv, opisyvaemye polugruppami otobrazhenii”, Vestnik MGU. Ser. Matematika, Mekhanika, 1973, no. 4, 24–29 | MR | Zbl

[7] Plotkin B. I., Gringlaz L. Ya., Gvaramiya A. A., Elementy algebraicheskoi teorii avtomatov, Vysshaya shkola, M., 1994

[8] Kilp M., Knauer U., Mikhalev A. V., Monoids, acts and categories, de Gruyter, Berlin–New York, 2000 | MR | Zbl

[9] Apraksina T. V., “Diagonalnye poligony nad polugruppami izotonnykh preobrazovanii”, Chebyshevskii sb., 12:1 (2011), 10–16 | MR | Zbl

[10] Apraksina T. V., “Tsiklichnost i konechnoporozhdennost diagonalnykh poligonov nad polugruppami preobrazovanii”, Mat. vestn. pedvuzov i un-tov Volgo-Vyatsk. regiona, 2012, no. 14, 51–58

[11] Gallagher P., Rus̆kuc N., “Generation of diagonal acts of some semigroups of transformations and relations”, Bull. Austral. Math. Soc., 72 (2005), 139–146 | DOI | MR | Zbl