Local primitiveness of graphs and nonnegative matrices
Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 68-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some important properties of objects simulated by nonnegative matrices (graphs) are revealed when their submatrices are positive (subgraphs are complete). For this reason, the primitiveness and the exponent of a matrix (graph) are generalized to the local primitiveness and to the quasiprimitiveness of nonnegative matrices and graphs. Conditions for matrix local primitiveness and quasiprimitiveness are obtained. A relation between local exponent and exponent is established.
Keywords: exponent, local exponent, local quasiexponent, local primitiveness.
Mots-clés : local subexponent, primitive matrix
@article{PDM_2014_3_a5,
     author = {S. N. Kyazhin and V. M. Fomichev},
     title = {Local primitiveness of graphs and nonnegative matrices},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {68--80},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a5/}
}
TY  - JOUR
AU  - S. N. Kyazhin
AU  - V. M. Fomichev
TI  - Local primitiveness of graphs and nonnegative matrices
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 68
EP  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_3_a5/
LA  - ru
ID  - PDM_2014_3_a5
ER  - 
%0 Journal Article
%A S. N. Kyazhin
%A V. M. Fomichev
%T Local primitiveness of graphs and nonnegative matrices
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 68-80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_3_a5/
%G ru
%F PDM_2014_3_a5
S. N. Kyazhin; V. M. Fomichev. Local primitiveness of graphs and nonnegative matrices. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 68-80. http://geodesic.mathdoc.fr/item/PDM_2014_3_a5/

[1] Kogos K. G., Fomichev V. M., “Polozhitelnye svoistva neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2012, no. 4(18), 5–13

[2] Kyazhin S. N., “O lokalnoi primitivnosti grafov i neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 81–83

[3] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, M., 2010, 424 pp.

[4] Berzh K., Teoriya grafov i eë primeneniya, IL, M., 1962, 320 pp.

[5] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000, 448 pp. | MR | Zbl

[6] Fomichev V. M., “Ekvivalentnye po Frobeniusu primitivnye mnozhestva chisel”, Prikladnaya diskretnaya matematika, 2014, no. 1(23), 20–26

[7] Alfonsin J. R., The Diophantine Frobenius Problem, Oxford University Press, 2005, 243 pp. | MR | Zbl