Local primitiveness of graphs and nonnegative matrices
Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 68-80
Voir la notice de l'article provenant de la source Math-Net.Ru
Some important properties of objects simulated by nonnegative matrices (graphs) are revealed when their submatrices are positive (subgraphs are complete). For this reason, the primitiveness and the exponent of a matrix (graph) are generalized to the local primitiveness and to the quasiprimitiveness of nonnegative matrices and graphs. Conditions for matrix local primitiveness and quasiprimitiveness are obtained. A relation between local exponent and exponent is established.
Keywords:
exponent, local exponent, local quasiexponent, local primitiveness.
Mots-clés : local subexponent, primitive matrix
Mots-clés : local subexponent, primitive matrix
@article{PDM_2014_3_a5,
author = {S. N. Kyazhin and V. M. Fomichev},
title = {Local primitiveness of graphs and nonnegative matrices},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {68--80},
publisher = {mathdoc},
number = {3},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a5/}
}
S. N. Kyazhin; V. M. Fomichev. Local primitiveness of graphs and nonnegative matrices. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 68-80. http://geodesic.mathdoc.fr/item/PDM_2014_3_a5/