Local primitiveness of graphs and nonnegative matrices
Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 68-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some important properties of objects simulated by nonnegative matrices (graphs) are revealed when their submatrices are positive (subgraphs are complete). For this reason, the primitiveness and the exponent of a matrix (graph) are generalized to the local primitiveness and to the quasiprimitiveness of nonnegative matrices and graphs. Conditions for matrix local primitiveness and quasiprimitiveness are obtained. A relation between local exponent and exponent is established.
Keywords: exponent, local exponent, local quasiexponent, local primitiveness.
Mots-clés : local subexponent, primitive matrix
@article{PDM_2014_3_a5,
     author = {S. N. Kyazhin and V. M. Fomichev},
     title = {Local primitiveness of graphs and nonnegative matrices},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {68--80},
     year = {2014},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a5/}
}
TY  - JOUR
AU  - S. N. Kyazhin
AU  - V. M. Fomichev
TI  - Local primitiveness of graphs and nonnegative matrices
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 68
EP  - 80
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_3_a5/
LA  - ru
ID  - PDM_2014_3_a5
ER  - 
%0 Journal Article
%A S. N. Kyazhin
%A V. M. Fomichev
%T Local primitiveness of graphs and nonnegative matrices
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 68-80
%N 3
%U http://geodesic.mathdoc.fr/item/PDM_2014_3_a5/
%G ru
%F PDM_2014_3_a5
S. N. Kyazhin; V. M. Fomichev. Local primitiveness of graphs and nonnegative matrices. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 68-80. http://geodesic.mathdoc.fr/item/PDM_2014_3_a5/

[1] Kogos K. G., Fomichev V. M., “Polozhitelnye svoistva neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2012, no. 4(18), 5–13

[2] Kyazhin S. N., “O lokalnoi primitivnosti grafov i neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 81–83

[3] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, M., 2010, 424 pp.

[4] Berzh K., Teoriya grafov i eë primeneniya, IL, M., 1962, 320 pp.

[5] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000, 448 pp. | MR | Zbl

[6] Fomichev V. M., “Ekvivalentnye po Frobeniusu primitivnye mnozhestva chisel”, Prikladnaya diskretnaya matematika, 2014, no. 1(23), 20–26

[7] Alfonsin J. R., The Diophantine Frobenius Problem, Oxford University Press, 2005, 243 pp. | MR | Zbl