Attractors in finite dynamic systems of binary vectors associated with palms orientations
Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 58-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Attractors in finite dynamic systems of binary vectors associated with palms orientations are described and states belonging to attractors are characterized. The states of such a system are all the possible orientations of some palm, and evolutionary function transforms a given palm orientation by reversing all arcs that enter the sinks.
Keywords: attractor, binary vector, finite dynamic system, palm, starlike tree.
@article{PDM_2014_3_a4,
     author = {A. V. Zharkova},
     title = {Attractors in finite dynamic systems of binary vectors associated with palms orientations},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {58--67},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a4/}
}
TY  - JOUR
AU  - A. V. Zharkova
TI  - Attractors in finite dynamic systems of binary vectors associated with palms orientations
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 58
EP  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_3_a4/
LA  - ru
ID  - PDM_2014_3_a4
ER  - 
%0 Journal Article
%A A. V. Zharkova
%T Attractors in finite dynamic systems of binary vectors associated with palms orientations
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 58-67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_3_a4/
%G ru
%F PDM_2014_3_a4
A. V. Zharkova. Attractors in finite dynamic systems of binary vectors associated with palms orientations. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 58-67. http://geodesic.mathdoc.fr/item/PDM_2014_3_a4/

[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C-25:9 (1976), 875–884 | DOI | MR | Zbl

[2] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.

[3] Kurnosova S. G., “T-neprivodimye rasshireniya dlya nekotorykh klassov grafov”, Teoreticheskie problemy informatiki i eë prilozhenii, 2004, no. 6, 113–125

[4] Barbosa V. C., An Atlas of Edge-Reversal Dynamics, Chapman Hall/CRC, Boca Raton, 2001, 385 pp. | MR | Zbl

[5] Colon-Reyes O., Laubenbacher R., Pareigis B., “Boolean monomial dynamical systems”, Ann. Combinator., 8 (2004), 425–439 | DOI | MR | Zbl

[6] Salii V. N., “Ob odnom klasse konechnykh dinamicheskikh sistem”, Vestnik Tomskogo gosudarstvennogo universiteta. Prilozhenie, 2005, no. 14, 23–26

[7] Vlasova A. V., Issledovanie evolyutsionnykh parametrov v dinamicheskikh sistemakh dvoichnykh vektorov, Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM No 2009614409, vydannoe Rospatentom. Zaregistrirovano v Reestre programm dlya EVM 20 avgusta 2009 g.

[8] Vlasova A. V., “Attraktory v dinamicheskoi sisteme $(B,\delta)$ dvoichnykh vektorov”, Kompyuternye nauki i informatsionnye tekhnologii, Materialy nauch. konf., Izd-vo Sarat. un-ta, Saratov, 2010, 35–41

[9] Vlasova A. V., “Attraktory dinamicheskikh sistem, assotsiirovannykh s tsiklami”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 90–95

[10] Zharkova A. V., “Kolichestvo attraktorov v dinamicheskikh sistemakh, assotsiirovannykh s tsiklami”, Matem. zametki, 95:4 (2014), 529–537 | DOI

[11] Vlasova A. V., “Dinamicheskie sistemy, opredelyaemye palmami”, Kompyuternye nauki i informatsionnye tekhnologii, Materialy Mezhdunar. nauch. konf., Izd-vo Sarat. un-ta, Saratov, 2009, 57–60

[12] Zharkova A. V., “O vetvlenii i neposredstvennykh predshestvennikakh sostoyanii v konechnoi dinamicheskoi sisteme vsekh vozmozhnykh orientatsii grafa”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 76–78