An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables
Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 28-39

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables is obtained. The bound is reached only for quadratic bent functions. A notion of completely affine decomposable Boolean function is introduced. It is proved that only affine and quadratic Boolean functions can be completely affine decomposable.
Keywords: Boolean functions, bent functions, quadratic bent functions.
@article{PDM_2014_3_a2,
     author = {N. A. Kolomeec},
     title = {An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {28--39},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a2/}
}
TY  - JOUR
AU  - N. A. Kolomeec
TI  - An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 28
EP  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_3_a2/
LA  - ru
ID  - PDM_2014_3_a2
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%T An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 28-39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_3_a2/
%G ru
%F PDM_2014_3_a2
N. A. Kolomeec. An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 28-39. http://geodesic.mathdoc.fr/item/PDM_2014_3_a2/