Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2014_3_a2, author = {N. A. Kolomeec}, title = {An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {28--39}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a2/} }
TY - JOUR AU - N. A. Kolomeec TI - An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables JO - Prikladnaâ diskretnaâ matematika PY - 2014 SP - 28 EP - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2014_3_a2/ LA - ru ID - PDM_2014_3_a2 ER -
%0 Journal Article %A N. A. Kolomeec %T An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables %J Prikladnaâ diskretnaâ matematika %D 2014 %P 28-39 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2014_3_a2/ %G ru %F PDM_2014_3_a2
N. A. Kolomeec. An upper bound for the number of bent functions at the distance $2^k$ from an arbitrary bent function in $2k$ variables. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 28-39. http://geodesic.mathdoc.fr/item/PDM_2014_3_a2/