Postoptimal analysis of multicriteria investment problem with the extreme optimism criteria
Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 117-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the stability radius of the multicriteria investment Boolean problem with the extreme optimism criteria, some lower and upper bounds are obtained in the case of the Hölder metric in the criteria and financial market state space and the Chebyshev metric in the portfolio space.
Keywords: multicriteria investment problem, extreme optimism criterion, Pareto set, stability radius of problem, the Hölder metric, the Chebyshev metric.
@article{PDM_2014_3_a11,
     author = {V. A. Emelichev and E. V. Ustilko},
     title = {Postoptimal analysis of multicriteria investment problem with the extreme optimism criteria},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {117--123},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a11/}
}
TY  - JOUR
AU  - V. A. Emelichev
AU  - E. V. Ustilko
TI  - Postoptimal analysis of multicriteria investment problem with the extreme optimism criteria
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 117
EP  - 123
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_3_a11/
LA  - ru
ID  - PDM_2014_3_a11
ER  - 
%0 Journal Article
%A V. A. Emelichev
%A E. V. Ustilko
%T Postoptimal analysis of multicriteria investment problem with the extreme optimism criteria
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 117-123
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_3_a11/
%G ru
%F PDM_2014_3_a11
V. A. Emelichev; E. V. Ustilko. Postoptimal analysis of multicriteria investment problem with the extreme optimism criteria. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 117-123. http://geodesic.mathdoc.fr/item/PDM_2014_3_a11/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986, 286 pp. | MR

[2] Emelichev B. A., Korotkov V. V., “O radiuse ustoichivosti vektornoi investitsionnoi zadachi s kriteriyami minimaksnogo riska Sevidzha”, Kibernetika i sistemnyi analiz, 2012, no. 3, 68–77

[3] Emelichev B. A., Korotkov V. V., “Ustoichivost vektornoi investitsionnoi bulevoi zadachi s kriteriyami Valda”, Diskretnaya matematika, 24:3 (2012), 3–16 | DOI | MR | Zbl

[4] Emelichev B. A., Korotkov V. V., “O mere ustoichivosti mnogokriterialnoi investitsionnoi zadachi s kriteriyami effektivnosti Valda”, Izvestiya NAN Azerbaidzhana. Ser. fiz.-tekh. i matem. nauk, 32:6 (2012), 88–98

[5] Emelichev V., Korotkov V., “On stability radius of the multicriteria variant of Markowitz's investment portfolio problem”, Bulletin of the Academy of Sciences of Moldova. Mathematics, 2011, no. 1, 83–94 | MR | Zbl

[6] Emelichev B. A., Kotov V. M., Kuzmin K. G. i dr., “Ustoichivost i effektivnye algoritmy resheniya zadach diskretnoi optimizatsii s mnogimi kriteriyami i nepolnoi informatsiei”, Problemy upravleniya i informatiki, 2014, no. 1, 53–67

[7] Emelichev B. A., Korotkov V. V., “Issledovanie ustoichivosti reshenii vektornoi investitsionnoi bulevoi zadachi v sluchae metriki Geldera v kriterialnom prostranstve”, Prikladnaya diskretnaya matematika, 2012, no. 4, 61–72

[8] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, 2-e izd., ispr. i dop., Fizmatlit, M., 2007, 256 pp.

[9] Emelichev B. A., Podkopaev D. P., “O kolichestvennoi mere ustoichivosti vektornoi zadachi tselochislennogo programmirovaniya”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 38:11 (1998), 1801–1805 | MR | Zbl