Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2014_3_a1, author = {M. V. Zaets}, title = {Functions with variative-coordinate polynomiality over primary rings of residues}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {12--27}, publisher = {mathdoc}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a1/} }
M. V. Zaets. Functions with variative-coordinate polynomiality over primary rings of residues. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 12-27. http://geodesic.mathdoc.fr/item/PDM_2014_3_a1/
[1] Mikhailov D. A., Nechaev A. A., “Reshenie sistemy polinomialnykh uravnenii nad koltsom Galua–Eizenshteina s pomoschyu kanonicheskoi sistemy obrazuyuschikh polinomialnogo ideala”, Diskretnaya matematika, 16:1 (2004), 21–51 | DOI | MR | Zbl
[2] Zaets M. V., Nikonov V. G., Shishkov A. B., “Klass funktsii s variatsionno-koordinatnoi polinomialnostyu nad koltsom $\mathbb Z_{2^m}$ i ego obobschenie”, Matematicheskie voprosy kriptografii, 4:3 (2013), 21–47
[3] Zaets M. V., Nikonov V. G., Shishkov A. B., “Funktsii s variatsionno-koordinatnoi polinomialnostyu i ikh svoistva”, Otkrytoe obrazovanie, 2012, no. 3, 57–61
[4] Glukhov M. M., Shishkov A. B., Matematicheskaya logika. Diskretnye funktsii. Teoriya algoritmov, Lan, M., 2012, 400 pp.
[5] Anashin V., Khrennikov A., Applied Algebraic Dynamics, Walter de Gruyter, Berlin–N.Y., 2009, 533 pp. | MR | Zbl
[6] Hungerbuhler N., Specker E., “A generalization of the Smarandache function to several variables”, Integers, 6 (2006), 1–14 | MR
[7] Zaets M. V., “Reshenie sistem VKP-uravnenii metodom pokoordinatnoi linearizatsii nad primarnym koltsom vychetov”, Tezisy XLI Mezhdunar. konf., XI Mezhdunar. konf. molodykh uchënykh “Informatsionnye tekhnologii v nauke, obrazovanii, telekommunikatsii i biznese IT+SE13”, Vestnik Moskovskogo universiteta im. S. Yu. Vitte. Ser. 1, Prilozhenie, 2013, 155–157