Functions with variative-coordinate polynomiality over primary rings of residues
Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 12-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new class of functions over primary ring of residues called the functions with variative-coordinate polynomiality is considered. This class generalizes the class of polynomial functions with the property that every system of equations composed of functions in the class may be solved by the coordinate linearization method.
Keywords: primary ring of residues, polynomial functions, formal derivative, system of equations, VCP-functions.
@article{PDM_2014_3_a1,
     author = {M. V. Zaets},
     title = {Functions with variative-coordinate polynomiality over primary rings of residues},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {12--27},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_3_a1/}
}
TY  - JOUR
AU  - M. V. Zaets
TI  - Functions with variative-coordinate polynomiality over primary rings of residues
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 12
EP  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_3_a1/
LA  - ru
ID  - PDM_2014_3_a1
ER  - 
%0 Journal Article
%A M. V. Zaets
%T Functions with variative-coordinate polynomiality over primary rings of residues
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 12-27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_3_a1/
%G ru
%F PDM_2014_3_a1
M. V. Zaets. Functions with variative-coordinate polynomiality over primary rings of residues. Prikladnaâ diskretnaâ matematika, no. 3 (2014), pp. 12-27. http://geodesic.mathdoc.fr/item/PDM_2014_3_a1/

[1] Mikhailov D. A., Nechaev A. A., “Reshenie sistemy polinomialnykh uravnenii nad koltsom Galua–Eizenshteina s pomoschyu kanonicheskoi sistemy obrazuyuschikh polinomialnogo ideala”, Diskretnaya matematika, 16:1 (2004), 21–51 | DOI | MR | Zbl

[2] Zaets M. V., Nikonov V. G., Shishkov A. B., “Klass funktsii s variatsionno-koordinatnoi polinomialnostyu nad koltsom $\mathbb Z_{2^m}$ i ego obobschenie”, Matematicheskie voprosy kriptografii, 4:3 (2013), 21–47

[3] Zaets M. V., Nikonov V. G., Shishkov A. B., “Funktsii s variatsionno-koordinatnoi polinomialnostyu i ikh svoistva”, Otkrytoe obrazovanie, 2012, no. 3, 57–61

[4] Glukhov M. M., Shishkov A. B., Matematicheskaya logika. Diskretnye funktsii. Teoriya algoritmov, Lan, M., 2012, 400 pp.

[5] Anashin V., Khrennikov A., Applied Algebraic Dynamics, Walter de Gruyter, Berlin–N.Y., 2009, 533 pp. | MR | Zbl

[6] Hungerbuhler N., Specker E., “A generalization of the Smarandache function to several variables”, Integers, 6 (2006), 1–14 | MR

[7] Zaets M. V., “Reshenie sistem VKP-uravnenii metodom pokoordinatnoi linearizatsii nad primarnym koltsom vychetov”, Tezisy XLI Mezhdunar. konf., XI Mezhdunar. konf. molodykh uchënykh “Informatsionnye tekhnologii v nauke, obrazovanii, telekommunikatsii i biznese IT+SE13”, Vestnik Moskovskogo universiteta im. S. Yu. Vitte. Ser. 1, Prilozhenie, 2013, 155–157