Proof of asymptotic constants in disconnection probability for weighted planar graph
Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 97-100
In this paper, formulas for the calculation of asymptotic constants in the disconnection probability for a weighted planar graph with high reliable edges are proved.
Keywords:
disconnection probability, weighted planar graphs.
@article{PDM_2014_2_a7,
author = {G. Sh. Tsitsiashvili and M. A. Osipova and A. S. Losev},
title = {Proof of asymptotic constants in disconnection probability for weighted planar graph},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {97--100},
year = {2014},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2014_2_a7/}
}
TY - JOUR AU - G. Sh. Tsitsiashvili AU - M. A. Osipova AU - A. S. Losev TI - Proof of asymptotic constants in disconnection probability for weighted planar graph JO - Prikladnaâ diskretnaâ matematika PY - 2014 SP - 97 EP - 100 IS - 2 UR - http://geodesic.mathdoc.fr/item/PDM_2014_2_a7/ LA - ru ID - PDM_2014_2_a7 ER -
G. Sh. Tsitsiashvili; M. A. Osipova; A. S. Losev. Proof of asymptotic constants in disconnection probability for weighted planar graph. Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 97-100. http://geodesic.mathdoc.fr/item/PDM_2014_2_a7/
[1] Tsitsiashvili G. Sh., Osipova M. A., Losev A. S., “Disconnection probability of planar weighted graph”, Appl. Math. Sci., 8:10 (2014), 469–472 | MR
[2] Tsitsiashvili G. Sh., “Complete calculation of disconnection probability in planar graphs”, Reliability: The. Appl., 7:1 (2012), 154–159
[3] Prasolov V. V., Elementy kombinatornoi i differentsialnoi topologii, MTsNMO, M., 2004
[4] Tsitsiashvili G. Sh., Losev A. S., “Svyaznost planarnogo grafa s vysokonadëzhnymi rebrami”, Prikladnaya diskretnaya matematika, 2012, no. 3(17), 103–107
[5] Harary F., Manvel B., “On the number of cycles in a graph”, Matematickycasopis, 21:1 (1971), 55–63 | MR | Zbl