Analytic complexity of cluster trees
Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 79-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of the analytic complexity of a binary tree is introduced. This is a nonnegative integer reflecting the combinatorial structure of a tree and its most concise analytic representation. The properties of the analytic complexity of a tree are described, and how to calculate it algorithmically is explained. The developed methods are used to compare cluster trees.
Keywords: cluster analysis, binary tree, analytic complexity.
@article{PDM_2014_2_a5,
     author = {A. I. Normov and T. M. Sadykov},
     title = {Analytic complexity of cluster trees},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {79--87},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_2_a5/}
}
TY  - JOUR
AU  - A. I. Normov
AU  - T. M. Sadykov
TI  - Analytic complexity of cluster trees
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 79
EP  - 87
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_2_a5/
LA  - ru
ID  - PDM_2014_2_a5
ER  - 
%0 Journal Article
%A A. I. Normov
%A T. M. Sadykov
%T Analytic complexity of cluster trees
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 79-87
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_2_a5/
%G ru
%F PDM_2014_2_a5
A. I. Normov; T. M. Sadykov. Analytic complexity of cluster trees. Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 79-87. http://geodesic.mathdoc.fr/item/PDM_2014_2_a5/

[1] Dyuran B., Odell P., Klasternyi analiz, Statistika, M., 1977, 128 pp.

[2] Mirkin B. G., Metody klasternogo analiza dlya podderzhki prinyatiya reshenii, Izd. dom Natsionalnogo issledovatelskogo universiteta Vysshaya shkola ekonomiki, M., 2011, 84 pp.

[3] Beloshapka V. K., “Ob analiticheskoi slozhnosti funktsii dvukh peremennykh”, Rossiiskii zhurnal matematicheskoi fiziki, 14:3 (2007), 243–249 | MR | Zbl

[4] Zykov A. P., Osnovy teorii grafov, Nauka, M., 1987, 383 pp. | MR | Zbl

[5] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, v. 1, Nauka, M., 1984, 293 pp. | MR

[6] Krasikov V. A., Sadykov T.M., “Ob analiticheskoi slozhnosti diskriminantov”, Trudy Matematicheskogo instituta im. V. A. Steklova, 279, 2012, 86–101 | MR

[7] Chikalov I. V., “Algoritm postroeniya derevev reshenii s minimalnym summarnym vesom vershin”, Vestnik NNGU. Matematicheskoe modelirovanie i optimalnoe upravlenie, 11:2 (2000), 200–204

[8] Morozov A. A., Taranchuk V. B., Programmirovanie zadach chislennogo analiza v sisteme Mathematica, BGPU, Minsk, 2005, 145 pp.