Combinatorial properties of rectangular $0,1$-matrix systems
Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 5-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

The combinatorial properties of a multiplicative partial semi-group generated by a system of non-negative rectangular matrices are investigated. The concept of primitiveness is extended from systems of square non-negative matrices to the systems of rectangular matrices. Some estimations for exponent of non-negative rectangular matrices are given.
Keywords: system of rectangular matrices, partial semi-group, primitive system of matrices, exponent.
@article{PDM_2014_2_a0,
     author = {Y. E. Avezova and V. M. Fomichev},
     title = {Combinatorial properties of rectangular $0,1$-matrix systems},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {5--11},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2014_2_a0/}
}
TY  - JOUR
AU  - Y. E. Avezova
AU  - V. M. Fomichev
TI  - Combinatorial properties of rectangular $0,1$-matrix systems
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2014
SP  - 5
EP  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2014_2_a0/
LA  - ru
ID  - PDM_2014_2_a0
ER  - 
%0 Journal Article
%A Y. E. Avezova
%A V. M. Fomichev
%T Combinatorial properties of rectangular $0,1$-matrix systems
%J Prikladnaâ diskretnaâ matematika
%D 2014
%P 5-11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2014_2_a0/
%G ru
%F PDM_2014_2_a0
Y. E. Avezova; V. M. Fomichev. Combinatorial properties of rectangular $0,1$-matrix systems. Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 5-11. http://geodesic.mathdoc.fr/item/PDM_2014_2_a0/

[1] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, M., 2010, 424 pp.

[2] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000, 448 pp. | MR | Zbl

[3] Kogos K. G., Fomichev V. M., “Polozhitelnye svoistva neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2012, no. 4(18), 5–13

[4] Birkgof G., Teoriya reshëtok, Nauka, M., 1984, 567 pp. | MR