Combinatorial properties of rectangular $0,1$-matrix systems
Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 5-11
The combinatorial properties of a multiplicative partial semi-group generated by a system of non-negative rectangular matrices are investigated. The concept of primitiveness is extended from systems of square non-negative matrices to the systems of rectangular matrices. Some estimations for exponent of non-negative rectangular matrices are given.
Keywords:
system of rectangular matrices, partial semi-group, primitive system of matrices, exponent.
@article{PDM_2014_2_a0,
author = {Y. E. Avezova and V. M. Fomichev},
title = {Combinatorial properties of rectangular $0,1$-matrix systems},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {5--11},
year = {2014},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2014_2_a0/}
}
Y. E. Avezova; V. M. Fomichev. Combinatorial properties of rectangular $0,1$-matrix systems. Prikladnaâ diskretnaâ matematika, no. 2 (2014), pp. 5-11. http://geodesic.mathdoc.fr/item/PDM_2014_2_a0/
[1] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, M., 2010, 424 pp.
[2] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000, 448 pp. | MR | Zbl
[3] Kogos K. G., Fomichev V. M., “Polozhitelnye svoistva neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2012, no. 4(18), 5–13
[4] Birkgof G., Teoriya reshëtok, Nauka, M., 1984, 567 pp. | MR