On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter
Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 76-85
Voir la notice de l'article provenant de la source Math-Net.Ru
For undirected circulant networks, the maximization problem for the number of nodes under given degree and diameter of a graph is considered. A new lower estimate is obtained for the attainable number of nodes in the circulant graphs of dimension 4 and any diameter. Some new infinite families of circulants reaching this estimate are constructed. For graphs of these families, some analytical descriptions are given.
Keywords:
undirected circulant graphs, diameter, maximum order of a graph.
@article{PDM_2013_3_a7,
author = {E. A. Monakhova},
title = {On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {76--85},
publisher = {mathdoc},
number = {3},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2013_3_a7/}
}
TY - JOUR AU - E. A. Monakhova TI - On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter JO - Prikladnaâ diskretnaâ matematika PY - 2013 SP - 76 EP - 85 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2013_3_a7/ LA - ru ID - PDM_2013_3_a7 ER -
E. A. Monakhova. On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter. Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 76-85. http://geodesic.mathdoc.fr/item/PDM_2013_3_a7/