Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDM_2013_3_a7, author = {E. A. Monakhova}, title = {On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter}, journal = {Prikladna\^a diskretna\^a matematika}, pages = {76--85}, publisher = {mathdoc}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDM_2013_3_a7/} }
TY - JOUR AU - E. A. Monakhova TI - On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter JO - Prikladnaâ diskretnaâ matematika PY - 2013 SP - 76 EP - 85 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2013_3_a7/ LA - ru ID - PDM_2013_3_a7 ER -
E. A. Monakhova. On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter. Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 76-85. http://geodesic.mathdoc.fr/item/PDM_2013_3_a7/
[1] Bermond J.-C., Comellas F., Hsu D. F., “Distributed loop computer networks: a survey”, J. Parallel Distributed Comput., 24 (1995), 2–10 | DOI
[2] Hwang F. K., “A survey on multi-loop networks”, Theor. Comp. Sci., 299:1–3 (2003), 107–121 | DOI | MR | Zbl
[3] Monakhova E. A., “Strukturnye i kommunikativnye svoistva tsirkulyantnykh setei”, Prikladnaya diskretnaya matematika, 2011, no. 3(13), 92–115
[4] Nesterenko B. B., Novotarskii M. A., “Kletochnye neironnye seti na tsirkulyantnykh grafakh”, Iskusstvennyi intellekt, 2009, no. 3, 132–138
[5] Martinez C., Beivide R., Gabidulin E. M., “Perfect codes from Cayley graphs over Lipschitz integers”, IEEE Trans. Inform. Theory, 55:8 (2009), 3552–3562 | DOI | MR
[6] Comellas F., Mitjana M., Peters J. G., “Broadcasting in small-world communication networks”, 9th Inter. Coll. on Structural Information and Communication Complexity (SIROCCO 9), Proc. Informatics, 13, 2002, 73–85
[7] Narayanan L., Opatrny J., Sotteau D., “All-to-all optical routing in chordal rings of degree four”, Algorithmica, 31:2 (2001), 155–178 | DOI | MR | Zbl
[8] Muga F. P., Saldana R. P., Yu W. E. S., “Building graph-based symmetric cluster”, NECTEC Techn. J., 11:9 (2001), 195–199
[9] Stojmenovic I., “Multiplicative circulant networks. Topological properties and communication algorithms”, Discrete Appl. Math., 77 (1997), 281–305 | DOI | MR | Zbl
[10] Vorobev V. A., “Prosteishie struktury odnorodnykh vychislitelnykh sistem”, Voprosy teorii i postroeniya VS, Vychislitelnye sistemy, 60, Novosibirsk, 1974, 35–49
[11] Wong C. K., Coppersmith D., “A combinatorial problem related to multimodule memory organizations”, J. Assoc. Comp. Mach., 21 (1974), 392–402 | DOI | MR | Zbl
[12] Korneev V. V., “O makrostrukture odnorodnykh vychislitelnykh sistem”, Voprosy teorii i postroeniya VS, Vychislitelnye sistemy, 60, Novosibirsk, 1974, 17–34 | Zbl
[13] Macbeth H., Siagiova J., Siran J., “Cayley graphs of given degree and diameter for cyclic, Abelian, and metacyclic groups”, Discrete Math., 312:1 (2012), 94–99 | DOI | MR | Zbl
[14] Jia X.-D., Su W., “Triple loop networks with minimal transmission delay”, Int. J. Found. Comp. Sci., 8:3 (1997), 305–328 | DOI | Zbl
[15] Chen S., Jia X.-D., “Undirected loop networks”, Networks, 23 (1993), 257–260 | DOI | MR | Zbl
[16] Monakhova E. A., “Optimal triple loop networks with given transmission delay: topological design and routing”, Inter. Network Optimization Conf. (INOC'2003), Evry/Paris, France, 2003, 410–415
[17] Dougherty R., Faber V., “The degree-diameter problem for several varieties of Cayley graphs, 1: the Abelian case”, SIAM J. Discrete Math., 17:3 (2004), 478–519 | DOI | MR | Zbl
[18] Monakhova E. A., “Optimizatsiya tsirkulyantnykh setei svyazi razmernosti chetyre”, Diskretnyi analiz i issledovanie operatsii, 15:3 (2008), 58–64 | MR | Zbl
[19] Monakhova E. A., “Novaya dostizhimaya nizhnyaya otsenka chisla vershin v tsirkulyantnykh setyakh razmernosti chetyre”, Diskretnyi analiz i issledovanie operatsii, 20:1 (2013), 37–44 | MR