On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter
Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 76-85

Voir la notice de l'article provenant de la source Math-Net.Ru

For undirected circulant networks, the maximization problem for the number of nodes under given degree and diameter of a graph is considered. A new lower estimate is obtained for the attainable number of nodes in the circulant graphs of dimension 4 and any diameter. Some new infinite families of circulants reaching this estimate are constructed. For graphs of these families, some analytical descriptions are given.
Keywords: undirected circulant graphs, diameter, maximum order of a graph.
@article{PDM_2013_3_a7,
     author = {E. A. Monakhova},
     title = {On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {76--85},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2013_3_a7/}
}
TY  - JOUR
AU  - E. A. Monakhova
TI  - On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2013
SP  - 76
EP  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2013_3_a7/
LA  - ru
ID  - PDM_2013_3_a7
ER  - 
%0 Journal Article
%A E. A. Monakhova
%T On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter
%J Prikladnaâ diskretnaâ matematika
%D 2013
%P 76-85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2013_3_a7/
%G ru
%F PDM_2013_3_a7
E. A. Monakhova. On a~construction of quadruple circulant networks with the maximal number of nodes for any diameter. Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 76-85. http://geodesic.mathdoc.fr/item/PDM_2013_3_a7/