Characterization of graphs with three additional edges in a~minimal $1$-vertex extension
Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 68-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Oriented graphs whose minimal vertex $1$-extensions have three additional arcs are described.
Keywords: graph, minimal vertex extension, exact vertex extension, fault tolerance.
@article{PDM_2013_3_a6,
     author = {M. B. Abrosimov and O. V. Modenova},
     title = {Characterization of graphs with three additional edges in a~minimal $1$-vertex extension},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {68--75},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2013_3_a6/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - O. V. Modenova
TI  - Characterization of graphs with three additional edges in a~minimal $1$-vertex extension
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2013
SP  - 68
EP  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2013_3_a6/
LA  - ru
ID  - PDM_2013_3_a6
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A O. V. Modenova
%T Characterization of graphs with three additional edges in a~minimal $1$-vertex extension
%J Prikladnaâ diskretnaâ matematika
%D 2013
%P 68-75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2013_3_a6/
%G ru
%F PDM_2013_3_a6
M. B. Abrosimov; O. V. Modenova. Characterization of graphs with three additional edges in a~minimal $1$-vertex extension. Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 68-75. http://geodesic.mathdoc.fr/item/PDM_2013_3_a6/

[1] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.

[2] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C-25:9 (1976), 875–884 | DOI | MR

[3] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR | Zbl

[4] Abrosimov M. B., “Kharakterizatsiya grafov s zadannym chislom dopolnitelnykh reber minimalnogo vershinnogo 1-rasshireniya”, Prikladnaya diskretnaya matematika, 2012, no. 1, 111–120

[5] Abrosimov M. B., “Minimalnye vershinnye rasshireniya napravlennykh zvezd”, Diskretnaya matematika, 23:2 (2011), 93–102 | DOI | MR

[6] Abrosimov M. B., Modenova O. V., “Kharakterizatsiya orgrafov s malym chislom dopolnitelnykh dug minimalnogo vershinnogo 1-rasshireniya”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:2, Ch. 2 (2013), 3–9

[7] Abrosimov M. B., Dolgov A. A., “O beskonturnykh tochnykh rasshireniyakh”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 10:1 (2010), 3–9

[8] Abrosimov M. B., “Minimalnye rasshireniya tranzitivnykh turnirov”, Vestnik Tomskogo gosudarstvennogo universiteta. Prilozhenie, 2006, no. 17, 187–190