On exponents of some varieties of linear algebras
Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 32-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algebra $UT_s$ of upper triangular matrices of a size $s$ is considered. The equivalent conditions for the growth estimation are obtained for subvarieties in $var(UT_s)$, for varieties of Leibnitz algebras with nilpotent commutant, and for varieties of Leibniz–Poisson algebras with the identities $\{\{x_1,y_1\},\dots,\{x_n,y_n\}\}=0$, $\{x_1,y_1\}\cdot\ldots\cdot\{x_n,y_n\}=0$.
Keywords: variety of linear algebras, growth of a variety, exponent of a variety.
@article{PDM_2013_3_a3,
     author = {S. M. Ratseev},
     title = {On exponents of some varieties of linear algebras},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {32--34},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2013_3_a3/}
}
TY  - JOUR
AU  - S. M. Ratseev
TI  - On exponents of some varieties of linear algebras
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2013
SP  - 32
EP  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2013_3_a3/
LA  - ru
ID  - PDM_2013_3_a3
ER  - 
%0 Journal Article
%A S. M. Ratseev
%T On exponents of some varieties of linear algebras
%J Prikladnaâ diskretnaâ matematika
%D 2013
%P 32-34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2013_3_a3/
%G ru
%F PDM_2013_3_a3
S. M. Ratseev. On exponents of some varieties of linear algebras. Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 32-34. http://geodesic.mathdoc.fr/item/PDM_2013_3_a3/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985, 448 pp. | MR | Zbl

[2] Drensky V., Free algebras and PI-algebras. Graduate course in algebra, Springer Verlag, Singapore, 2000, 272 pp. | MR | Zbl

[3] Giambruno A., Zaicev M. V., “On codimention growth of finitely generated associative algebras”, Adv. Math., 140 (1998), 145–155 | DOI | MR | Zbl

[4] Zaitcev M. V., Mishchenko S. P., “Example of variety of Lie algebras with fractional exponent”, J. Math. Sci., 93:6 (1999), 977–982 | DOI | MR

[5] Petrogradsky V. M., “Exponents of subvarieties of upper triangular matrices over arbitrary fields are integral”, Serdika Math., 26:2 (2000), 1001–1010 | MR

[6] Ratseev S. M., “Tozhdestva v mnogoobraziyakh, porozhdennykh algebrami verkhnetreugolnykh matrits”, Sib. matem. zhurn., 52:2 (2011), 416–429 | MR

[7] Maltsev Yu. N., “Bazis tozhdestv algebry verkhnetreugolnykh matrits”, Algebra i logika, 10 (1971), 393–400

[8] Ratseev S. M., “Rost nekotorykh mnogoobrazii algebr Leibnitsa”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya seriya, 2006, no. 6(46), 70–77 | MR | Zbl

[9] Ratseev S. M., “Growth of some varieties of Leibniz–Poisson algebras”, Serdica Math. J., 37:4 (2011), 331–340 | MR | Zbl

[10] Ratseev S. M., “Otsenki rosta mnogoobrazii algebr Leibnitsa s nilpotentnym kommutantom”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya seriya, 2010, no. 4(78), 65–72

[11] Ratseev S. M., Cherevatenko O. I., “Eksponenty nekotorykh mnogoobrazii algebr Leibnitsa–Puassona”, Vestnik Samarskogo gosudarstvennogo universiteta. Estestvennonauchnaya seriya, 2013, no. 3(104), 42–52