About linear and affine equivalence of substitutions
Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 105-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of computer experiments with a software implementation of algorithms for determining the linear and affine equivalence of substitutions are presented. The detailed description of the algorithms is given. Experimental operation time of the algorithms is compared with the theoretical complexity of the problem.
Keywords: linear equivalence
Mots-clés : affine equivalence, substitution.
@article{PDM_2013_3_a10,
     author = {I. V. Pankratov},
     title = {About linear and affine equivalence of substitutions},
     journal = {Prikladna\^a diskretna\^a matematika},
     pages = {105--111},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDM_2013_3_a10/}
}
TY  - JOUR
AU  - I. V. Pankratov
TI  - About linear and affine equivalence of substitutions
JO  - Prikladnaâ diskretnaâ matematika
PY  - 2013
SP  - 105
EP  - 111
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDM_2013_3_a10/
LA  - ru
ID  - PDM_2013_3_a10
ER  - 
%0 Journal Article
%A I. V. Pankratov
%T About linear and affine equivalence of substitutions
%J Prikladnaâ diskretnaâ matematika
%D 2013
%P 105-111
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDM_2013_3_a10/
%G ru
%F PDM_2013_3_a10
I. V. Pankratov. About linear and affine equivalence of substitutions. Prikladnaâ diskretnaâ matematika, no. 3 (2013), pp. 105-111. http://geodesic.mathdoc.fr/item/PDM_2013_3_a10/

[1] Biryukov A., De Canniere C., Braeken A., Preneel B., “A toolbox for cryptanalysis: linear and affine equivalence algorithms”, EUROCRYPT 2003, LNCS, 2656, 2003, 33–50 | MR | Zbl