Markowitz investment Boolean problem in case of uncertainty, multicriteria and risk
Prikladnaâ diskretnaâ matematika, no. 2 (2013), pp. 115-122
Voir la notice de l'article provenant de la source Math-Net.Ru
Lower and upper bounds are obtained for the stability radius of a Pareto optimal portfolio of multicriteria variant of Markowitz problem with Savage minimax risk criteria in the case of any Hölder metric $l_p$, $1\leq p\leq\infty$, in the portfolio space and Chebyshev metric in the risk and market state spaces.
Keywords:
multicriteria investment problem, Pareto optimal portfolio, Savage risk criteria, stability radius of portfolio, Hölder metric.
@article{PDM_2013_2_a11,
author = {V. A. Emelichev and R. P. Shatsov},
title = {Markowitz investment {Boolean} problem in case of uncertainty, multicriteria and risk},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {115--122},
publisher = {mathdoc},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2013_2_a11/}
}
TY - JOUR AU - V. A. Emelichev AU - R. P. Shatsov TI - Markowitz investment Boolean problem in case of uncertainty, multicriteria and risk JO - Prikladnaâ diskretnaâ matematika PY - 2013 SP - 115 EP - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2013_2_a11/ LA - ru ID - PDM_2013_2_a11 ER -
V. A. Emelichev; R. P. Shatsov. Markowitz investment Boolean problem in case of uncertainty, multicriteria and risk. Prikladnaâ diskretnaâ matematika, no. 2 (2013), pp. 115-122. http://geodesic.mathdoc.fr/item/PDM_2013_2_a11/