Study of discrete optimization problems with logical constraints based on regular partitions
Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 99-109
Voir la notice de l'article provenant de la source Math-Net.Ru
Some discrete optimization problems with logical constraints are considered, and the possibility of applying these problems in complex products design is investigated. The results of the studying these problems with the use of the integer programming models and regular partitions approach are reviewed. The structure and the complexity of the problems are analysed, and the algorithms for SAT and MAX-SAT problems based on this approach are proposed.
Keywords:
satisfiability problem, logical constraints, integer programming, $L$-class enumeration.
@article{PDM_2013_1_a8,
author = {A. A. Kolokolov and A. V. Adelshin and D. I. Yagofarova},
title = {Study of discrete optimization problems with logical constraints based on regular partitions},
journal = {Prikladna\^a diskretna\^a matematika},
pages = {99--109},
publisher = {mathdoc},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDM_2013_1_a8/}
}
TY - JOUR AU - A. A. Kolokolov AU - A. V. Adelshin AU - D. I. Yagofarova TI - Study of discrete optimization problems with logical constraints based on regular partitions JO - Prikladnaâ diskretnaâ matematika PY - 2013 SP - 99 EP - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDM_2013_1_a8/ LA - ru ID - PDM_2013_1_a8 ER -
%0 Journal Article %A A. A. Kolokolov %A A. V. Adelshin %A D. I. Yagofarova %T Study of discrete optimization problems with logical constraints based on regular partitions %J Prikladnaâ diskretnaâ matematika %D 2013 %P 99-109 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDM_2013_1_a8/ %G ru %F PDM_2013_1_a8
A. A. Kolokolov; A. V. Adelshin; D. I. Yagofarova. Study of discrete optimization problems with logical constraints based on regular partitions. Prikladnaâ diskretnaâ matematika, no. 1 (2013), pp. 99-109. http://geodesic.mathdoc.fr/item/PDM_2013_1_a8/